This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring's unity is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngid.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| drngid.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | ||
| Assertion | drngid | ⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngid.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngid.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | drngid.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 5 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 6 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) | |
| 8 | 6 7 3 | unitgrpid | ⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) ) |
| 10 | 1 6 2 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ) |
| 11 | 10 | simprbi | ⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 13 | 12 4 | eqtr4di | ⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = 𝐺 ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑅 ∈ DivRing → ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ 𝐺 ) ) |