This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that an element Z is the identity element of a group. (Contributed by NM, 7-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | isgrpid2 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ↔ 0 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑍 + 𝑍 ) = 𝑍 ↔ 0 = 𝑍 ) ) |
| 5 | 4 | biimpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑍 + 𝑍 ) = 𝑍 → 0 = 𝑍 ) ) |
| 6 | 5 | expimpd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) → 0 = 𝑍 ) ) |
| 7 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 8 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
| 9 | 7 8 | mpdan | ⊢ ( 𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
| 10 | 7 9 | jca | ⊢ ( 𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ) |
| 11 | eleq1 | ⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵 ) ) | |
| 12 | id | ⊢ ( 0 = 𝑍 → 0 = 𝑍 ) | |
| 13 | 12 12 | oveq12d | ⊢ ( 0 = 𝑍 → ( 0 + 0 ) = ( 𝑍 + 𝑍 ) ) |
| 14 | 13 12 | eqeq12d | ⊢ ( 0 = 𝑍 → ( ( 0 + 0 ) = 0 ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( 0 = 𝑍 → ( ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ) ) |
| 16 | 10 15 | syl5ibcom | ⊢ ( 𝐺 ∈ Grp → ( 0 = 𝑍 → ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ) ) |
| 17 | 6 16 | impbid | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ↔ 0 = 𝑍 ) ) |