This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| dprdff.1 | |- ( ph -> G dom DProd S ) |
||
| dprdff.2 | |- ( ph -> dom S = I ) |
||
| Assertion | dprdw | |- ( ph -> ( F e. W <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 2 | dprdff.1 | |- ( ph -> G dom DProd S ) |
|
| 3 | dprdff.2 | |- ( ph -> dom S = I ) |
|
| 4 | elex | |- ( F e. X_ i e. I ( S ` i ) -> F e. _V ) |
|
| 5 | 4 | a1i | |- ( ph -> ( F e. X_ i e. I ( S ` i ) -> F e. _V ) ) |
| 6 | 2 3 | dprddomcld | |- ( ph -> I e. _V ) |
| 7 | fnex | |- ( ( F Fn I /\ I e. _V ) -> F e. _V ) |
|
| 8 | 7 | expcom | |- ( I e. _V -> ( F Fn I -> F e. _V ) ) |
| 9 | 6 8 | syl | |- ( ph -> ( F Fn I -> F e. _V ) ) |
| 10 | 9 | adantrd | |- ( ph -> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) -> F e. _V ) ) |
| 11 | fveq2 | |- ( i = x -> ( S ` i ) = ( S ` x ) ) |
|
| 12 | 11 | cbvixpv | |- X_ i e. I ( S ` i ) = X_ x e. I ( S ` x ) |
| 13 | 12 | eleq2i | |- ( F e. X_ i e. I ( S ` i ) <-> F e. X_ x e. I ( S ` x ) ) |
| 14 | elixp2 | |- ( F e. X_ x e. I ( S ` x ) <-> ( F e. _V /\ F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) |
|
| 15 | 3anass | |- ( ( F e. _V /\ F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) <-> ( F e. _V /\ ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
|
| 16 | 13 14 15 | 3bitri | |- ( F e. X_ i e. I ( S ` i ) <-> ( F e. _V /\ ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 17 | 16 | baib | |- ( F e. _V -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 18 | 17 | a1i | |- ( ph -> ( F e. _V -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) ) |
| 19 | 5 10 18 | pm5.21ndd | |- ( ph -> ( F e. X_ i e. I ( S ` i ) <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) ) ) |
| 20 | 19 | anbi1d | |- ( ph -> ( ( F e. X_ i e. I ( S ` i ) /\ F finSupp .0. ) <-> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) /\ F finSupp .0. ) ) ) |
| 21 | breq1 | |- ( h = F -> ( h finSupp .0. <-> F finSupp .0. ) ) |
|
| 22 | 21 1 | elrab2 | |- ( F e. W <-> ( F e. X_ i e. I ( S ` i ) /\ F finSupp .0. ) ) |
| 23 | df-3an | |- ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) <-> ( ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) ) /\ F finSupp .0. ) ) |
|
| 24 | 20 22 23 | 3bitr4g | |- ( ph -> ( F e. W <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) ) |