This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-cancellation law for domains, biconditional version of domnlcan . (Contributed by Thierry Arnoux, 8-Jun-2025) Shorten this theorem and domnlcan overall. (Revised by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domncan.b | |- B = ( Base ` R ) |
|
| domncan.0 | |- .0. = ( 0g ` R ) |
||
| domncan.m | |- .x. = ( .r ` R ) |
||
| domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
||
| domncan.y | |- ( ph -> Y e. B ) |
||
| domncan.z | |- ( ph -> Z e. B ) |
||
| domncan.r | |- ( ph -> R e. Domn ) |
||
| Assertion | domnlcanb | |- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domncan.b | |- B = ( Base ` R ) |
|
| 2 | domncan.0 | |- .0. = ( 0g ` R ) |
|
| 3 | domncan.m | |- .x. = ( .r ` R ) |
|
| 4 | domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
|
| 5 | domncan.y | |- ( ph -> Y e. B ) |
|
| 6 | domncan.z | |- ( ph -> Z e. B ) |
|
| 7 | domncan.r | |- ( ph -> R e. Domn ) |
|
| 8 | oveq1 | |- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
|
| 9 | oveq1 | |- ( a = X -> ( a .x. c ) = ( X .x. c ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( a = X -> ( ( a .x. b ) = ( a .x. c ) <-> ( X .x. b ) = ( X .x. c ) ) ) |
| 11 | 10 | imbi1d | |- ( a = X -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( X .x. b ) = ( X .x. c ) -> b = c ) ) ) |
| 12 | oveq2 | |- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
|
| 13 | 12 | eqeq1d | |- ( b = Y -> ( ( X .x. b ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. c ) ) ) |
| 14 | eqeq1 | |- ( b = Y -> ( b = c <-> Y = c ) ) |
|
| 15 | 13 14 | imbi12d | |- ( b = Y -> ( ( ( X .x. b ) = ( X .x. c ) -> b = c ) <-> ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) ) ) |
| 16 | oveq2 | |- ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) |
|
| 17 | 16 | eqeq2d | |- ( c = Z -> ( ( X .x. Y ) = ( X .x. c ) <-> ( X .x. Y ) = ( X .x. Z ) ) ) |
| 18 | eqeq2 | |- ( c = Z -> ( Y = c <-> Y = Z ) ) |
|
| 19 | 17 18 | imbi12d | |- ( c = Z -> ( ( ( X .x. Y ) = ( X .x. c ) -> Y = c ) <-> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) ) |
| 20 | 1 2 3 | isdomn4 | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| 21 | 7 20 | sylib | |- ( ph -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
| 22 | 21 | simprd | |- ( ph -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
| 23 | 11 15 19 22 4 5 6 | rspc3dv | |- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) -> Y = Z ) ) |
| 24 | oveq2 | |- ( Y = Z -> ( X .x. Y ) = ( X .x. Z ) ) |
|
| 25 | 23 24 | impbid1 | |- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |