This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domncan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domncan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| domncan.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domncan.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) | ||
| domncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| domncan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| domncan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | ||
| domnlcan.1 | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) | ||
| Assertion | domnlcan | ⊢ ( 𝜑 → 𝑌 = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domncan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domncan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | domncan.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | domncan.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) | |
| 5 | domncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | domncan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | domncan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | |
| 8 | domnlcan.1 | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) | |
| 9 | 1 2 3 4 5 6 7 | domnlcanb | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ↔ 𝑌 = 𝑍 ) ) |
| 10 | 8 9 | mpbid | ⊢ ( 𝜑 → 𝑌 = 𝑍 ) |