This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-cancellation law for domains, biconditional version of domnlcan . (Contributed by Thierry Arnoux, 8-Jun-2025) Shorten this theorem and domnlcan overall. (Revised by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domncan.b | ||
| domncan.0 | |||
| domncan.m | |||
| domncan.x | |||
| domncan.y | |||
| domncan.z | |||
| domncan.r | |||
| Assertion | domnlcanb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domncan.b | ||
| 2 | domncan.0 | ||
| 3 | domncan.m | ||
| 4 | domncan.x | ||
| 5 | domncan.y | ||
| 6 | domncan.z | ||
| 7 | domncan.r | ||
| 8 | oveq1 | ||
| 9 | oveq1 | ||
| 10 | 8 9 | eqeq12d | |
| 11 | 10 | imbi1d | |
| 12 | oveq2 | ||
| 13 | 12 | eqeq1d | |
| 14 | eqeq1 | ||
| 15 | 13 14 | imbi12d | |
| 16 | oveq2 | ||
| 17 | 16 | eqeq2d | |
| 18 | eqeq2 | ||
| 19 | 17 18 | imbi12d | |
| 20 | 1 2 3 | isdomn4 | |
| 21 | 7 20 | sylib | |
| 22 | 21 | simprd | |
| 23 | 11 15 19 22 4 5 6 | rspc3dv | |
| 24 | oveq2 | ||
| 25 | 23 24 | impbid1 |