This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc3dv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| rspc3dv.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜏 ) ) | ||
| rspc3dv.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜏 ↔ 𝜒 ) ) | ||
| rspc3dv.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 𝜓 ) | ||
| rspc3dv.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| rspc3dv.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) | ||
| rspc3dv.7 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐹 ) | ||
| Assertion | rspc3dv | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3dv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) | |
| 2 | rspc3dv.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜏 ) ) | |
| 3 | rspc3dv.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜏 ↔ 𝜒 ) ) | |
| 4 | rspc3dv.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 𝜓 ) | |
| 5 | rspc3dv.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 6 | rspc3dv.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) | |
| 7 | rspc3dv.7 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐹 ) | |
| 8 | 5 6 7 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ) |
| 9 | 1 2 3 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 𝜓 → 𝜒 ) ) |
| 10 | 8 4 9 | sylc | ⊢ ( 𝜑 → 𝜒 ) |