This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmin | ⊢ dom ( 𝐴 ∩ 𝐵 ) ⊆ ( dom 𝐴 ∩ dom 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 | ⊢ ( ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm2 | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 4 | elin | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵 ) ) | |
| 8 | 2 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 9 | 2 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) |
| 10 | 8 9 | anbi12i | ⊢ ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵 ) ↔ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 11 | 7 10 | bitri | ⊢ ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↔ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 12 | 1 6 11 | 3imtr4i | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ) |
| 13 | 12 | ssriv | ⊢ dom ( 𝐴 ∩ 𝐵 ) ⊆ ( dom 𝐴 ∩ dom 𝐵 ) |