This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two class abstractions. Version of unab using implicit substitution, which does not require ax-8 , ax-10 , ax-12 . (Contributed by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unabw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| unabw.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | unabw | ⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑦 ∣ ( 𝜒 ∨ 𝜃 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unabw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | unabw.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | df-un | ⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) } | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 1 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 6 | 4 5 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) |
| 7 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 8 | 2 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜃 ) |
| 9 | 7 8 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜃 ) |
| 10 | 6 9 | orbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝜒 ∨ 𝜃 ) ) |
| 11 | 10 | abbii | ⊢ { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) } = { 𝑦 ∣ ( 𝜒 ∨ 𝜃 ) } |
| 12 | 3 11 | eqtri | ⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑦 ∣ ( 𝜒 ∨ 𝜃 ) } |