This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmun |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ||
| 2 | 1 | exbidv | |
| 3 | breq1 | ||
| 4 | 3 | exbidv | |
| 5 | 2 4 | unabw | |
| 6 | brun | ||
| 7 | 6 | exbii | |
| 8 | 19.43 | ||
| 9 | 7 8 | bitr2i | |
| 10 | 9 | abbii | |
| 11 | 5 10 | eqtri | |
| 12 | df-dm | ||
| 13 | df-dm | ||
| 14 | 12 13 | uneq12i | |
| 15 | df-dm | ||
| 16 | 11 14 15 | 3eqtr4ri |