This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopab2rex | ⊢ ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | ⊢ ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 2 | rexcom4 | ⊢ ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) | |
| 3 | 1 2 | orbi12i | ⊢ ( ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 4 | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 7 | rexcom4 | ⊢ ( ∃ 𝑢 ∈ 𝑈 ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) | |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) |
| 11 | elisset | ⊢ ( 𝐵 ∈ 𝑋 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 12 | ibar | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 = 𝐵 ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) | |
| 13 | 12 | bicomd | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑦 = 𝐵 ) ) |
| 14 | 13 | exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 15 | 11 14 | syl5ibrcom | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 16 | 10 15 | impbid2 | ⊢ ( 𝐵 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑧 = 𝐴 ) ) |
| 17 | 16 | ralrexbid | ⊢ ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ) ) |
| 19 | simpl | ⊢ ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) | |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) |
| 21 | elisset | ⊢ ( 𝐷 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐷 ) | |
| 22 | ibar | ⊢ ( 𝑧 = 𝐶 → ( 𝑦 = 𝐷 ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 23 | 22 | bicomd | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑦 = 𝐷 ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 𝑦 = 𝐷 ) ) |
| 25 | 21 24 | syl5ibrcom | ⊢ ( 𝐷 ∈ 𝑊 → ( 𝑧 = 𝐶 → ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 26 | 20 25 | impbid2 | ⊢ ( 𝐷 ∈ 𝑊 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑧 = 𝐶 ) ) |
| 27 | 26 | ralrexbid | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 28 | 27 | adantl | ⊢ ( ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 29 | 18 28 | orbi12d | ⊢ ( ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 30 | 29 | ralrexbid | ⊢ ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 31 | 8 30 | bitr3id | ⊢ ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑦 ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 32 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴 ↔ 𝑧 = 𝐴 ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 34 | 33 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 35 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑧 = 𝐶 ) ) | |
| 36 | 35 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 37 | 36 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 38 | 34 37 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 39 | 38 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 40 | 39 | dmopabelb | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) } ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 41 | 40 | elv | ⊢ ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) } ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 42 | vex | ⊢ 𝑧 ∈ V | |
| 43 | 32 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ↔ ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ) ) |
| 44 | 35 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 45 | 43 44 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 46 | 45 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 47 | 42 46 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) } ↔ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 48 | 31 41 47 | 3bitr4g | ⊢ ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) } ↔ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) } ) ) |
| 49 | 48 | eqrdv | ⊢ ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝑈 ( ∃ 𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) } ) |