This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of dm0rn0 as of 24-Jan-2026. (Contributed by NM, 21-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dm0rn0OLD | |- ( dom A = (/) <-> ran A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | |- ( A. x -. E. y x A y <-> -. E. x E. y x A y ) |
|
| 2 | excom | |- ( E. x E. y x A y <-> E. y E. x x A y ) |
|
| 3 | 1 2 | xchbinx | |- ( A. x -. E. y x A y <-> -. E. y E. x x A y ) |
| 4 | alnex | |- ( A. y -. E. x x A y <-> -. E. y E. x x A y ) |
|
| 5 | 3 4 | bitr4i | |- ( A. x -. E. y x A y <-> A. y -. E. x x A y ) |
| 6 | noel | |- -. x e. (/) |
|
| 7 | 6 | nbn | |- ( -. E. y x A y <-> ( E. y x A y <-> x e. (/) ) ) |
| 8 | 7 | albii | |- ( A. x -. E. y x A y <-> A. x ( E. y x A y <-> x e. (/) ) ) |
| 9 | noel | |- -. y e. (/) |
|
| 10 | 9 | nbn | |- ( -. E. x x A y <-> ( E. x x A y <-> y e. (/) ) ) |
| 11 | 10 | albii | |- ( A. y -. E. x x A y <-> A. y ( E. x x A y <-> y e. (/) ) ) |
| 12 | 5 8 11 | 3bitr3i | |- ( A. x ( E. y x A y <-> x e. (/) ) <-> A. y ( E. x x A y <-> y e. (/) ) ) |
| 13 | eqabcb | |- ( { x | E. y x A y } = (/) <-> A. x ( E. y x A y <-> x e. (/) ) ) |
|
| 14 | eqabcb | |- ( { y | E. x x A y } = (/) <-> A. y ( E. x x A y <-> y e. (/) ) ) |
|
| 15 | 12 13 14 | 3bitr4i | |- ( { x | E. y x A y } = (/) <-> { y | E. x x A y } = (/) ) |
| 16 | df-dm | |- dom A = { x | E. y x A y } |
|
| 17 | 16 | eqeq1i | |- ( dom A = (/) <-> { x | E. y x A y } = (/) ) |
| 18 | dfrn2 | |- ran A = { y | E. x x A y } |
|
| 19 | 18 | eqeq1i | |- ( ran A = (/) <-> { y | E. x x A y } = (/) ) |
| 20 | 15 17 19 | 3bitr4i | |- ( dom A = (/) <-> ran A = (/) ) |