This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subdivcomb1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) − 𝐵 ) / 𝐶 ) = ( 𝐴 − ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | 1 2 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
| 4 | divsubdir | ⊢ ( ( ( 𝐶 · 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) − 𝐵 ) / 𝐶 ) = ( ( ( 𝐶 · 𝐴 ) / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) | |
| 5 | 3 4 | syld3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) − 𝐵 ) / 𝐶 ) = ( ( ( 𝐶 · 𝐴 ) / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| 6 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐶 · 𝐴 ) / 𝐶 ) = 𝐴 ) | |
| 7 | 6 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / 𝐶 ) = 𝐴 ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / 𝐶 ) = 𝐴 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) / 𝐶 ) − ( 𝐵 / 𝐶 ) ) = ( 𝐴 − ( 𝐵 / 𝐶 ) ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 𝐶 · 𝐴 ) − 𝐵 ) / 𝐶 ) = ( 𝐴 − ( 𝐵 / 𝐶 ) ) ) |