This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qnumgt0 | ⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ 0 < ( numer ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ ℚ → 0 ∈ ℝ ) | |
| 2 | qre | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) | |
| 3 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 4 | 3 | nnred | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℝ ) |
| 5 | 3 | nngt0d | ⊢ ( 𝐴 ∈ ℚ → 0 < ( denom ‘ 𝐴 ) ) |
| 6 | ltmul1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( denom ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( denom ‘ 𝐴 ) ) ) → ( 0 < 𝐴 ↔ ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ) ) | |
| 7 | 1 2 4 5 6 | syl112anc | ⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ) ) |
| 8 | 3 | nncnd | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 9 | 8 | mul02d | ⊢ ( 𝐴 ∈ ℚ → ( 0 · ( denom ‘ 𝐴 ) ) = 0 ) |
| 10 | qmuldeneqnum | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝐴 ∈ ℚ → ( ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ↔ 0 < ( numer ‘ 𝐴 ) ) ) |
| 12 | 7 11 | bitrd | ⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ 0 < ( numer ‘ 𝐴 ) ) ) |