This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem8.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem8.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem8.3 | ⊢ 𝐷 ≠ 0 | ||
| divalglem8.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | ||
| Assertion | divalglem10 | ⊢ ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem8.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem8.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem8.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | divalglem8.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | |
| 5 | eqid | ⊢ inf ( 𝑆 , ℝ , < ) = inf ( 𝑆 , ℝ , < ) | |
| 6 | 1 2 3 4 5 | divalglem9 | ⊢ ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) |
| 7 | elnn0z | ⊢ ( 𝑥 ∈ ℕ0 ↔ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ) |
| 9 | an12 | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ) ) | |
| 10 | ancom | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ↔ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) | |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 12 | 9 11 | bitri | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 13 | 8 12 | bitri | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ↔ ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ) |
| 14 | 13 | anbi1i | ⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 15 | anass | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑟 = 𝑥 → ( ( 𝑞 · 𝐷 ) + 𝑟 ) = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) | |
| 18 | 17 | eqeq2d | ⊢ ( 𝑟 = 𝑥 → ( 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 20 | 1 2 3 4 | divalglem4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } |
| 21 | 19 20 | elrab2 | ⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 22 | 21 | anbi2i | ⊢ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 23 | ancom | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ 𝑆 ) ) | |
| 24 | anass | ⊢ ( ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 𝑥 < ( abs ‘ 𝐷 ) ∧ ( 𝑥 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) | |
| 25 | 22 23 24 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( ( 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 26 | df-3an | ⊢ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) | |
| 27 | 26 | rexbii | ⊢ ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃ 𝑞 ∈ ℤ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 28 | r19.42v | ⊢ ( ∃ 𝑞 ∈ ℤ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 30 | 29 | anbi2i | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 31 | 16 25 30 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 32 | 31 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) |
| 33 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 < ( abs ‘ 𝐷 ) ) ) | |
| 34 | df-reu | ⊢ ( ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) ) | |
| 35 | 32 33 34 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝑆 𝑥 < ( abs ‘ 𝐷 ) ↔ ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ) |
| 36 | 6 35 | mpbi | ⊢ ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) |
| 37 | breq2 | ⊢ ( 𝑥 = 𝑟 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑟 ) ) | |
| 38 | breq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 < ( abs ‘ 𝐷 ) ↔ 𝑟 < ( abs ‘ 𝐷 ) ) ) | |
| 39 | oveq2 | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑞 · 𝐷 ) + 𝑥 ) = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) | |
| 40 | 39 | eqeq2d | ⊢ ( 𝑥 = 𝑟 → ( 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) |
| 41 | 37 38 40 | 3anbi123d | ⊢ ( 𝑥 = 𝑟 → ( ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) ) |
| 42 | 41 | rexbidv | ⊢ ( 𝑥 = 𝑟 → ( ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) ) |
| 43 | 42 | cbvreuvw | ⊢ ( ∃! 𝑥 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑥 ∧ 𝑥 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑥 ) ) ↔ ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) |
| 44 | 36 43 | mpbi | ⊢ ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) |