This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgpos.1 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| ditgneg.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ditgneg.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | ditgneg | ⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgpos.1 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 2 | ditgneg.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ditgneg.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | 1 | biantrurd | ⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 5 | 2 3 | letri3d | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 6 | 4 5 | bitr4d | ⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ 𝐴 = 𝐵 ) ) |
| 7 | ditg0 | ⊢ ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 = 0 | |
| 8 | neg0 | ⊢ - 0 = 0 | |
| 9 | 7 8 | eqtr4i | ⊢ ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 = - 0 |
| 10 | ditgeq2 | ⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = ⨜ [ 𝐵 → 𝐵 ] 𝐶 d 𝑥 ) | |
| 11 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐵 ) = ( 𝐵 (,) 𝐵 ) ) | |
| 12 | iooid | ⊢ ( 𝐵 (,) 𝐵 ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 14 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ∅ 𝐶 d 𝑥 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ∅ 𝐶 d 𝑥 ) |
| 16 | itg0 | ⊢ ∫ ∅ 𝐶 d 𝑥 = 0 | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝐴 = 𝐵 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = 0 ) |
| 18 | 17 | negeqd | ⊢ ( 𝐴 = 𝐵 → - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = - 0 ) |
| 19 | 9 10 18 | 3eqtr4a | ⊢ ( 𝐴 = 𝐵 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
| 20 | 6 19 | biimtrdi | ⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) ) |
| 21 | df-ditg | ⊢ ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = if ( 𝐵 ≤ 𝐴 , ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 , - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) | |
| 22 | iffalse | ⊢ ( ¬ 𝐵 ≤ 𝐴 → if ( 𝐵 ≤ 𝐴 , ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 , - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) | |
| 23 | 21 22 | eqtrid | ⊢ ( ¬ 𝐵 ≤ 𝐴 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |
| 24 | 20 23 | pm2.61d1 | ⊢ ( 𝜑 → ⨜ [ 𝐵 → 𝐴 ] 𝐶 d 𝑥 = - ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 ) |