This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ditg0 | ⊢ ⨜ [ 𝐴 → 𝐴 ] 𝐵 d 𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐴 ] 𝐵 d 𝑥 = if ( 𝐴 ≤ 𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) | |
| 2 | iooid | ⊢ ( 𝐴 (,) 𝐴 ) = ∅ | |
| 3 | itgeq1 | ⊢ ( ( 𝐴 (,) 𝐴 ) = ∅ → ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = ∫ ∅ 𝐵 d 𝑥 ) | |
| 4 | 2 3 | ax-mp | ⊢ ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = ∫ ∅ 𝐵 d 𝑥 |
| 5 | itg0 | ⊢ ∫ ∅ 𝐵 d 𝑥 = 0 | |
| 6 | 4 5 | eqtri | ⊢ ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 |
| 7 | 6 | negeqi | ⊢ - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = - 0 |
| 8 | neg0 | ⊢ - 0 = 0 | |
| 9 | 7 8 | eqtri | ⊢ - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 |
| 10 | ifeq12 | ⊢ ( ( ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 ∧ - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 = 0 ) → if ( 𝐴 ≤ 𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = if ( 𝐴 ≤ 𝐴 , 0 , 0 ) ) | |
| 11 | 6 9 10 | mp2an | ⊢ if ( 𝐴 ≤ 𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = if ( 𝐴 ≤ 𝐴 , 0 , 0 ) |
| 12 | ifid | ⊢ if ( 𝐴 ≤ 𝐴 , 0 , 0 ) = 0 | |
| 13 | 11 12 | eqtri | ⊢ if ( 𝐴 ≤ 𝐴 , ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 , - ∫ ( 𝐴 (,) 𝐴 ) 𝐵 d 𝑥 ) = 0 |
| 14 | 1 13 | eqtri | ⊢ ⨜ [ 𝐴 → 𝐴 ] 𝐵 d 𝑥 = 0 |