This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The A and B here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +oo , -oo for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | cC | ⊢ 𝐶 | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 3 0 1 2 | cdit | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 |
| 5 | cle | ⊢ ≤ | |
| 6 | 0 1 5 | wbr | ⊢ 𝐴 ≤ 𝐵 |
| 7 | cioo | ⊢ (,) | |
| 8 | 0 1 7 | co | ⊢ ( 𝐴 (,) 𝐵 ) |
| 9 | 3 8 2 | citg | ⊢ ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 |
| 10 | 1 0 7 | co | ⊢ ( 𝐵 (,) 𝐴 ) |
| 11 | 3 10 2 | citg | ⊢ ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 |
| 12 | 11 | cneg | ⊢ - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 |
| 13 | 6 9 12 | cif | ⊢ if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) |
| 14 | 4 13 | wceq | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐶 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) |