This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgpos.1 | |- ( ph -> A <_ B ) |
|
| ditgneg.2 | |- ( ph -> A e. RR ) |
||
| ditgneg.3 | |- ( ph -> B e. RR ) |
||
| Assertion | ditgneg | |- ( ph -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgpos.1 | |- ( ph -> A <_ B ) |
|
| 2 | ditgneg.2 | |- ( ph -> A e. RR ) |
|
| 3 | ditgneg.3 | |- ( ph -> B e. RR ) |
|
| 4 | 1 | biantrurd | |- ( ph -> ( B <_ A <-> ( A <_ B /\ B <_ A ) ) ) |
| 5 | 2 3 | letri3d | |- ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 6 | 4 5 | bitr4d | |- ( ph -> ( B <_ A <-> A = B ) ) |
| 7 | ditg0 | |- S_ [ B -> B ] C _d x = 0 |
|
| 8 | neg0 | |- -u 0 = 0 |
|
| 9 | 7 8 | eqtr4i | |- S_ [ B -> B ] C _d x = -u 0 |
| 10 | ditgeq2 | |- ( A = B -> S_ [ B -> A ] C _d x = S_ [ B -> B ] C _d x ) |
|
| 11 | oveq1 | |- ( A = B -> ( A (,) B ) = ( B (,) B ) ) |
|
| 12 | iooid | |- ( B (,) B ) = (/) |
|
| 13 | 11 12 | eqtrdi | |- ( A = B -> ( A (,) B ) = (/) ) |
| 14 | itgeq1 | |- ( ( A (,) B ) = (/) -> S. ( A (,) B ) C _d x = S. (/) C _d x ) |
|
| 15 | 13 14 | syl | |- ( A = B -> S. ( A (,) B ) C _d x = S. (/) C _d x ) |
| 16 | itg0 | |- S. (/) C _d x = 0 |
|
| 17 | 15 16 | eqtrdi | |- ( A = B -> S. ( A (,) B ) C _d x = 0 ) |
| 18 | 17 | negeqd | |- ( A = B -> -u S. ( A (,) B ) C _d x = -u 0 ) |
| 19 | 9 10 18 | 3eqtr4a | |- ( A = B -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |
| 20 | 6 19 | biimtrdi | |- ( ph -> ( B <_ A -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) ) |
| 21 | df-ditg | |- S_ [ B -> A ] C _d x = if ( B <_ A , S. ( B (,) A ) C _d x , -u S. ( A (,) B ) C _d x ) |
|
| 22 | iffalse | |- ( -. B <_ A -> if ( B <_ A , S. ( B (,) A ) C _d x , -u S. ( A (,) B ) C _d x ) = -u S. ( A (,) B ) C _d x ) |
|
| 23 | 21 22 | eqtrid | |- ( -. B <_ A -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |
| 24 | 20 23 | pm2.61d1 | |- ( ph -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |