This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmaddsr | ⊢ dom +R = ( R × R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plr | ⊢ +R = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = [ 〈 𝑤 , 𝑣 〉 ] ~R ∧ 𝑦 = [ 〈 𝑢 , 𝑓 〉 ] ~R ) ∧ 𝑧 = [ 〈 ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) 〉 ] ~R ) ) } | |
| 2 | 1 | dmeqi | ⊢ dom +R = dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = [ 〈 𝑤 , 𝑣 〉 ] ~R ∧ 𝑦 = [ 〈 𝑢 , 𝑓 〉 ] ~R ) ∧ 𝑧 = [ 〈 ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) 〉 ] ~R ) ) } |
| 3 | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = [ 〈 𝑤 , 𝑣 〉 ] ~R ∧ 𝑦 = [ 〈 𝑢 , 𝑓 〉 ] ~R ) ∧ 𝑧 = [ 〈 ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) 〉 ] ~R ) ) } ⊆ ( R × R ) | |
| 4 | 2 3 | eqsstri | ⊢ dom +R ⊆ ( R × R ) |
| 5 | 0nsr | ⊢ ¬ ∅ ∈ R | |
| 6 | addclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) → ( 𝑥 +R 𝑦 ) ∈ R ) | |
| 7 | 5 6 | oprssdm | ⊢ ( R × R ) ⊆ dom +R |
| 8 | 4 7 | eqssi | ⊢ dom +R = ( R × R ) |