This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 | ||
| ndmov.6 | ⊢ dom 𝐺 = ( 𝑆 × 𝑆 ) | ||
| Assertion | ndmovdistr | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
| 2 | ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 3 | ndmov.6 | ⊢ dom 𝐺 = ( 𝑆 × 𝑆 ) | |
| 4 | 1 2 | ndmovrcl | ⊢ ( ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 → ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 8 | 3 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ ( 𝐵 𝐹 𝐶 ) ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ∅ ) |
| 9 | 7 8 | nsyl5 | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ∅ ) |
| 10 | 3 2 | ndmovrcl | ⊢ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 11 | 3 2 | ndmovrcl | ⊢ ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 → ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 12 | 10 11 | anim12i | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 13 | anandi3 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) |
| 15 | 1 | ndmov | ⊢ ( ¬ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 𝐺 𝐶 ) ∈ 𝑆 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) = ∅ ) |
| 16 | 14 15 | nsyl5 | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) = ∅ ) |
| 17 | 9 16 | eqtr4d | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) ) |