This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrpi | ⊢ ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 2 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 3 | pinn | ⊢ ( 𝐶 ∈ N → 𝐶 ∈ ω ) | |
| 4 | nndi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 6 | addclpi | ⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐵 +N 𝐶 ) ∈ N ) | |
| 7 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 +N 𝐶 ) ∈ N ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +N 𝐶 ) ) ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +N 𝐶 ) ) ) |
| 9 | addpiord | ⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐵 +N 𝐶 ) = ( 𝐵 +o 𝐶 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·o ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·o ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 14 | mulclpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) | |
| 15 | mulclpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) ∈ N ) | |
| 16 | addpiord | ⊢ ( ( ( 𝐴 ·N 𝐵 ) ∈ N ∧ ( 𝐴 ·N 𝐶 ) ∈ N ) → ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +o ( 𝐴 ·N 𝐶 ) ) ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) ) → ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +o ( 𝐴 ·N 𝐶 ) ) ) |
| 18 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 19 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N 𝐶 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 20 | 18 19 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) ) → ( ( 𝐴 ·N 𝐵 ) +o ( 𝐴 ·N 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐴 ∈ N ∧ 𝐶 ∈ N ) ) → ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 22 | 21 | 3impdi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 23 | 5 13 22 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) ) |
| 24 | dmaddpi | ⊢ dom +N = ( N × N ) | |
| 25 | 0npi | ⊢ ¬ ∅ ∈ N | |
| 26 | dmmulpi | ⊢ dom ·N = ( N × N ) | |
| 27 | 24 25 26 | ndmovdistr | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) ) |
| 28 | 23 27 | pm2.61i | ⊢ ( 𝐴 ·N ( 𝐵 +N 𝐶 ) ) = ( ( 𝐴 ·N 𝐵 ) +N ( 𝐴 ·N 𝐶 ) ) |