This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulclpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 2 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 3 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 4 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |
| 6 | elni2 | ⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) | |
| 7 | 6 | simprbi | ⊢ ( 𝐵 ∈ N → ∅ ∈ 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐵 ) |
| 9 | 3 | adantl | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐵 ∈ ω ) |
| 10 | 2 | adantr | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → 𝐴 ∈ ω ) |
| 11 | elni2 | ⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) | |
| 12 | 11 | simprbi | ⊢ ( 𝐴 ∈ N → ∅ ∈ 𝐴 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ∅ ∈ 𝐴 ) |
| 14 | nnmordi | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 15 | 9 10 13 14 | syl21anc | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 16 | 8 15 | mpd | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o ∅ ) ∈ ( 𝐴 ·o 𝐵 ) ) |
| 17 | 16 | ne0d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) |
| 18 | elni | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ N ↔ ( ( 𝐴 ·o 𝐵 ) ∈ ω ∧ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) | |
| 19 | 5 17 18 | sylanbrc | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·o 𝐵 ) ∈ N ) |
| 20 | 1 19 | eqeltrd | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |