This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjressuc2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑢 = 𝐴 → ( 𝑢 = 𝑣 ↔ 𝐴 = 𝑣 ) ) | |
| 2 | eceq1 | ⊢ ( 𝑢 = 𝐴 → [ 𝑢 ] 𝑅 = [ 𝐴 ] 𝑅 ) | |
| 3 | 2 | ineq1d | ⊢ ( 𝑢 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝑢 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
| 5 | 1 4 | orbi12d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
| 6 | eqeq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝐴 ) ) | |
| 7 | eceq1 | ⊢ ( 𝑣 = 𝐴 → [ 𝑣 ] 𝑅 = [ 𝐴 ] 𝑅 ) | |
| 8 | 7 | ineq2d | ⊢ ( 𝑣 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( 𝑣 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ↔ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
| 10 | 6 9 | orbi12d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑢 = 𝐴 → ( 𝑢 = 𝐴 ↔ 𝐴 = 𝐴 ) ) | |
| 12 | 2 | ineq1d | ⊢ ( 𝑢 = 𝐴 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
| 13 | 12 | eqeq1d | ⊢ ( 𝑢 = 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
| 14 | 11 13 | orbi12d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 15 | 5 10 14 | 2ralunsn | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) ) |
| 16 | eqid | ⊢ 𝐴 = 𝐴 | |
| 17 | 16 | orci | ⊢ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) |
| 18 | 17 | biantru | ⊢ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 19 | 18 | anbi2i | ⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ( ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( 𝐴 = 𝐴 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
| 20 | 15 19 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) |
| 21 | eqeq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 = 𝐴 ↔ 𝑣 = 𝐴 ) ) | |
| 22 | eqcom | ⊢ ( 𝑣 = 𝐴 ↔ 𝐴 = 𝑣 ) | |
| 23 | 21 22 | bitrdi | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 = 𝐴 ↔ 𝐴 = 𝑣 ) ) |
| 24 | eceq1 | ⊢ ( 𝑢 = 𝑣 → [ 𝑢 ] 𝑅 = [ 𝑣 ] 𝑅 ) | |
| 25 | 24 | ineq1d | ⊢ ( 𝑢 = 𝑣 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝑣 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) ) |
| 26 | incom | ⊢ ( [ 𝑣 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) | |
| 27 | 25 26 | eqtrdi | ⊢ ( 𝑢 = 𝑣 → ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) ) |
| 28 | 27 | eqeq1d | ⊢ ( 𝑢 = 𝑣 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
| 29 | 23 28 | orbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
| 30 | 29 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
| 31 | 30 | biimpi | ⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) → ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) |
| 32 | 31 | pm4.71i | ⊢ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
| 33 | 32 | anbi2i | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) |
| 34 | 3anass | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ( ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) ) | |
| 35 | df-3an | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) | |
| 36 | 33 34 35 | 3bitr2ri | ⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( 𝐴 = 𝑣 ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 37 | 20 36 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
| 38 | elneq | ⊢ ( 𝑢 ∈ 𝐴 → 𝑢 ≠ 𝐴 ) | |
| 39 | 38 | neneqd | ⊢ ( 𝑢 ∈ 𝐴 → ¬ 𝑢 = 𝐴 ) |
| 40 | 39 | biorfd | ⊢ ( 𝑢 ∈ 𝐴 → ( ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 41 | 40 | ralbiia | ⊢ ( ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ↔ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) |
| 42 | 41 | anbi2i | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑢 = 𝐴 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 43 | 37 42 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |