This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjressuc2 | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( u = A -> ( u = v <-> A = v ) ) |
|
| 2 | eceq1 | |- ( u = A -> [ u ] R = [ A ] R ) |
|
| 3 | 2 | ineq1d | |- ( u = A -> ( [ u ] R i^i [ v ] R ) = ( [ A ] R i^i [ v ] R ) ) |
| 4 | 3 | eqeq1d | |- ( u = A -> ( ( [ u ] R i^i [ v ] R ) = (/) <-> ( [ A ] R i^i [ v ] R ) = (/) ) ) |
| 5 | 1 4 | orbi12d | |- ( u = A -> ( ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
| 6 | eqeq2 | |- ( v = A -> ( u = v <-> u = A ) ) |
|
| 7 | eceq1 | |- ( v = A -> [ v ] R = [ A ] R ) |
|
| 8 | 7 | ineq2d | |- ( v = A -> ( [ u ] R i^i [ v ] R ) = ( [ u ] R i^i [ A ] R ) ) |
| 9 | 8 | eqeq1d | |- ( v = A -> ( ( [ u ] R i^i [ v ] R ) = (/) <-> ( [ u ] R i^i [ A ] R ) = (/) ) ) |
| 10 | 6 9 | orbi12d | |- ( v = A -> ( ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| 11 | eqeq1 | |- ( u = A -> ( u = A <-> A = A ) ) |
|
| 12 | 2 | ineq1d | |- ( u = A -> ( [ u ] R i^i [ A ] R ) = ( [ A ] R i^i [ A ] R ) ) |
| 13 | 12 | eqeq1d | |- ( u = A -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( [ A ] R i^i [ A ] R ) = (/) ) ) |
| 14 | 11 13 | orbi12d | |- ( u = A -> ( ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) |
| 15 | 5 10 14 | 2ralunsn | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) ) ) |
| 16 | eqid | |- A = A |
|
| 17 | 16 | orci | |- ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) |
| 18 | 17 | biantru | |- ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) <-> ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) |
| 19 | 18 | anbi2i | |- ( ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) ) |
| 20 | 15 19 | bitr4di | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
| 21 | eqeq1 | |- ( u = v -> ( u = A <-> v = A ) ) |
|
| 22 | eqcom | |- ( v = A <-> A = v ) |
|
| 23 | 21 22 | bitrdi | |- ( u = v -> ( u = A <-> A = v ) ) |
| 24 | eceq1 | |- ( u = v -> [ u ] R = [ v ] R ) |
|
| 25 | 24 | ineq1d | |- ( u = v -> ( [ u ] R i^i [ A ] R ) = ( [ v ] R i^i [ A ] R ) ) |
| 26 | incom | |- ( [ v ] R i^i [ A ] R ) = ( [ A ] R i^i [ v ] R ) |
|
| 27 | 25 26 | eqtrdi | |- ( u = v -> ( [ u ] R i^i [ A ] R ) = ( [ A ] R i^i [ v ] R ) ) |
| 28 | 27 | eqeq1d | |- ( u = v -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( [ A ] R i^i [ v ] R ) = (/) ) ) |
| 29 | 23 28 | orbi12d | |- ( u = v -> ( ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
| 30 | 29 | cbvralvw | |- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) |
| 31 | 30 | biimpi | |- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) -> A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) |
| 32 | 31 | pm4.71i | |- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
| 33 | 32 | anbi2i | |- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
| 34 | 3anass | |- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
|
| 35 | df-3an | |- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
|
| 36 | 33 34 35 | 3bitr2ri | |- ( ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| 37 | 20 36 | bitrdi | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
| 38 | elneq | |- ( u e. A -> u =/= A ) |
|
| 39 | 38 | neneqd | |- ( u e. A -> -. u = A ) |
| 40 | 39 | biorfd | |- ( u e. A -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| 41 | 40 | ralbiia | |- ( A. u e. A ( [ u ] R i^i [ A ] R ) = (/) <-> A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) |
| 42 | 41 | anbi2i | |- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| 43 | 37 42 | bitr4di | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |