This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that ( R |X. S ) -cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020) (Revised by Peter Mazsa, 21-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjecxrn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecxrn | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) | |
| 2 | ecxrn | ⊢ ( 𝐵 ∈ 𝑊 → [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) | |
| 3 | 1 2 | ineqan12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = ( { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ∩ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) ) |
| 4 | inopab | ⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ∩ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) } ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } | |
| 5 | 3 4 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } ) |
| 6 | an4 | ⊢ ( ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) ↔ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
| 7 | 6 | opabbii | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦 ∧ 𝐵 𝑆 𝑧 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } |
| 8 | 5 7 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ) |
| 9 | 8 | neeq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ≠ ∅ ) ) |
| 10 | opabn0 | ⊢ ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
| 11 | 9 10 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 12 | exdistrv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 14 | ecinn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ) ) | |
| 15 | ecinn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ↔ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦 ∧ 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧 ∧ 𝐵 𝑆 𝑧 ) ) ) ) |
| 17 | 13 16 | bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ) ) |
| 18 | neanior | ⊢ ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) ≠ ∅ ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) ) |
| 20 | 19 | necon4abid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∩ [ 𝐵 ] ( 𝑅 ⋉ 𝑆 ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) ) |