This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ralunsn.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2ralunsn.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 2ralunsn.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | 2ralunsn | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralunsn.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | 2ralunsn.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2ralunsn.3 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜃 ) ) | |
| 4 | 2 | ralunsn | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| 6 | 1 | ralbidv | ⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜒 ) ) |
| 7 | 6 3 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) |
| 8 | 7 | ralunsn | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |
| 9 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 10 | 9 | anbi1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) |
| 11 | 8 10 | bitrdi | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |
| 12 | 5 11 | bitrd | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |