This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjprg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| disjprg.2 | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | ||
| Assertion | disjprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| 2 | disjprg.2 | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | |
| 3 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
| 6 | 4 5 1 | csbhypf | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 7 | 6 | ineq1d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 9 | 3 8 | orbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) | |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝐸 | |
| 14 | 12 13 2 | csbhypf | ⊢ ( 𝑦 = 𝐵 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
| 15 | 14 | ineq1d | ⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝑦 = 𝐵 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 17 | 11 16 | orbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 19 | 10 18 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 21 | id | ⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) | |
| 22 | 21 | eqcomd | ⊢ ( 𝑧 = 𝐴 → 𝐴 = 𝑧 ) |
| 23 | 22 | orcd | ⊢ ( 𝑧 = 𝐴 → ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 24 | trud | ⊢ ( 𝑧 = 𝐴 → ⊤ ) | |
| 25 | 23 24 | 2thd | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
| 26 | eqeq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) | |
| 27 | 12 13 2 | csbhypf | ⊢ ( 𝑧 = 𝐵 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
| 28 | 27 | ineq2d | ⊢ ( 𝑧 = 𝐵 → ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
| 29 | 28 | eqeq1d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 30 | 26 29 | orbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 31 | 25 30 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 32 | 31 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 33 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) | |
| 34 | 33 | neneqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
| 35 | biorf | ⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 37 | tru | ⊢ ⊤ | |
| 38 | 37 | biantrur | ⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 39 | 36 38 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ⊤ ∧ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) ) |
| 40 | 32 39 | bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 41 | eqeq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐴 ) ) | |
| 42 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 43 | 41 42 | bitrdi | ⊢ ( 𝑧 = 𝐴 → ( 𝐵 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
| 44 | 4 5 1 | csbhypf | ⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 45 | 44 | ineq2d | ⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐸 ∩ 𝐷 ) ) |
| 46 | incom | ⊢ ( 𝐸 ∩ 𝐷 ) = ( 𝐷 ∩ 𝐸 ) | |
| 47 | 45 46 | eqtrdi | ⊢ ( 𝑧 = 𝐴 → ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ( 𝐷 ∩ 𝐸 ) ) |
| 48 | 47 | eqeq1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 49 | 43 48 | orbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 50 | id | ⊢ ( 𝑧 = 𝐵 → 𝑧 = 𝐵 ) | |
| 51 | 50 | eqcomd | ⊢ ( 𝑧 = 𝐵 → 𝐵 = 𝑧 ) |
| 52 | 51 | orcd | ⊢ ( 𝑧 = 𝐵 → ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 53 | trud | ⊢ ( 𝑧 = 𝐵 → ⊤ ) | |
| 54 | 52 53 | 2thd | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ⊤ ) ) |
| 55 | 49 54 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 56 | 55 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 57 | 37 | biantru | ⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) |
| 58 | 36 57 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐴 = 𝐵 ∨ ( 𝐷 ∩ 𝐸 ) = ∅ ) ∧ ⊤ ) ) ) |
| 59 | 56 58 | bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |
| 60 | 40 59 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐴 = 𝑧 ∨ ( 𝐷 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝐵 = 𝑧 ∨ ( 𝐸 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 61 | 20 60 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) ) |
| 62 | disjors | ⊢ ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ∀ 𝑧 ∈ { 𝐴 , 𝐵 } ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) | |
| 63 | pm4.24 | ⊢ ( ( 𝐷 ∩ 𝐸 ) = ∅ ↔ ( ( 𝐷 ∩ 𝐸 ) = ∅ ∧ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) | |
| 64 | 61 62 63 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 ↔ ( 𝐷 ∩ 𝐸 ) = ∅ ) ) |