This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjprg.1 | |- ( x = A -> C = D ) |
|
| disjprg.2 | |- ( x = B -> C = E ) |
||
| Assertion | disjprg | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( Disj_ x e. { A , B } C <-> ( D i^i E ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprg.1 | |- ( x = A -> C = D ) |
|
| 2 | disjprg.2 | |- ( x = B -> C = E ) |
|
| 3 | eqeq1 | |- ( y = A -> ( y = z <-> A = z ) ) |
|
| 4 | nfcv | |- F/_ x A |
|
| 5 | nfcv | |- F/_ x D |
|
| 6 | 4 5 1 | csbhypf | |- ( y = A -> [_ y / x ]_ C = D ) |
| 7 | 6 | ineq1d | |- ( y = A -> ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = ( D i^i [_ z / x ]_ C ) ) |
| 8 | 7 | eqeq1d | |- ( y = A -> ( ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) <-> ( D i^i [_ z / x ]_ C ) = (/) ) ) |
| 9 | 3 8 | orbi12d | |- ( y = A -> ( ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) ) ) |
| 10 | 9 | ralbidv | |- ( y = A -> ( A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) ) ) |
| 11 | eqeq1 | |- ( y = B -> ( y = z <-> B = z ) ) |
|
| 12 | nfcv | |- F/_ x B |
|
| 13 | nfcv | |- F/_ x E |
|
| 14 | 12 13 2 | csbhypf | |- ( y = B -> [_ y / x ]_ C = E ) |
| 15 | 14 | ineq1d | |- ( y = B -> ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = ( E i^i [_ z / x ]_ C ) ) |
| 16 | 15 | eqeq1d | |- ( y = B -> ( ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) <-> ( E i^i [_ z / x ]_ C ) = (/) ) ) |
| 17 | 11 16 | orbi12d | |- ( y = B -> ( ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) |
| 18 | 17 | ralbidv | |- ( y = B -> ( A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) |
| 19 | 10 18 | ralprg | |- ( ( A e. V /\ B e. V ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) ) |
| 20 | 19 | 3adant3 | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) ) |
| 21 | id | |- ( z = A -> z = A ) |
|
| 22 | 21 | eqcomd | |- ( z = A -> A = z ) |
| 23 | 22 | orcd | |- ( z = A -> ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) ) |
| 24 | trud | |- ( z = A -> T. ) |
|
| 25 | 23 24 | 2thd | |- ( z = A -> ( ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> T. ) ) |
| 26 | eqeq2 | |- ( z = B -> ( A = z <-> A = B ) ) |
|
| 27 | 12 13 2 | csbhypf | |- ( z = B -> [_ z / x ]_ C = E ) |
| 28 | 27 | ineq2d | |- ( z = B -> ( D i^i [_ z / x ]_ C ) = ( D i^i E ) ) |
| 29 | 28 | eqeq1d | |- ( z = B -> ( ( D i^i [_ z / x ]_ C ) = (/) <-> ( D i^i E ) = (/) ) ) |
| 30 | 26 29 | orbi12d | |- ( z = B -> ( ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( A = B \/ ( D i^i E ) = (/) ) ) ) |
| 31 | 25 30 | ralprg | |- ( ( A e. V /\ B e. V ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) ) |
| 32 | 31 | 3adant3 | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) ) |
| 33 | simp3 | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> A =/= B ) |
|
| 34 | 33 | neneqd | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> -. A = B ) |
| 35 | biorf | |- ( -. A = B -> ( ( D i^i E ) = (/) <-> ( A = B \/ ( D i^i E ) = (/) ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( A = B \/ ( D i^i E ) = (/) ) ) ) |
| 37 | tru | |- T. |
|
| 38 | 37 | biantrur | |- ( ( A = B \/ ( D i^i E ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) |
| 39 | 36 38 | bitrdi | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) ) |
| 40 | 32 39 | bitr4d | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( D i^i E ) = (/) ) ) |
| 41 | eqeq2 | |- ( z = A -> ( B = z <-> B = A ) ) |
|
| 42 | eqcom | |- ( B = A <-> A = B ) |
|
| 43 | 41 42 | bitrdi | |- ( z = A -> ( B = z <-> A = B ) ) |
| 44 | 4 5 1 | csbhypf | |- ( z = A -> [_ z / x ]_ C = D ) |
| 45 | 44 | ineq2d | |- ( z = A -> ( E i^i [_ z / x ]_ C ) = ( E i^i D ) ) |
| 46 | incom | |- ( E i^i D ) = ( D i^i E ) |
|
| 47 | 45 46 | eqtrdi | |- ( z = A -> ( E i^i [_ z / x ]_ C ) = ( D i^i E ) ) |
| 48 | 47 | eqeq1d | |- ( z = A -> ( ( E i^i [_ z / x ]_ C ) = (/) <-> ( D i^i E ) = (/) ) ) |
| 49 | 43 48 | orbi12d | |- ( z = A -> ( ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( A = B \/ ( D i^i E ) = (/) ) ) ) |
| 50 | id | |- ( z = B -> z = B ) |
|
| 51 | 50 | eqcomd | |- ( z = B -> B = z ) |
| 52 | 51 | orcd | |- ( z = B -> ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) |
| 53 | trud | |- ( z = B -> T. ) |
|
| 54 | 52 53 | 2thd | |- ( z = B -> ( ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> T. ) ) |
| 55 | 49 54 | ralprg | |- ( ( A e. V /\ B e. V ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) ) |
| 56 | 55 | 3adant3 | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) ) |
| 57 | 37 | biantru | |- ( ( A = B \/ ( D i^i E ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) |
| 58 | 36 57 | bitrdi | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) ) |
| 59 | 56 58 | bitr4d | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( D i^i E ) = (/) ) ) |
| 60 | 40 59 | anbi12d | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) ) ) |
| 61 | 20 60 | bitrd | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) ) ) |
| 62 | disjors | |- ( Disj_ x e. { A , B } C <-> A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) ) |
|
| 63 | pm4.24 | |- ( ( D i^i E ) = (/) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) ) |
|
| 64 | 61 62 63 | 3bitr4g | |- ( ( A e. V /\ B e. V /\ A =/= B ) -> ( Disj_ x e. { A , B } C <-> ( D i^i E ) = (/) ) ) |