This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difelfzle | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℕ0 ) | |
| 2 | elfznn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 3 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 4 | nn0z | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) | |
| 5 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 − 𝐾 ) ∈ ℤ ) | |
| 6 | 3 4 5 | syl2anr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 − 𝐾 ) ∈ ℤ ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 − 𝐾 ) ∈ ℤ ) |
| 8 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 9 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 10 | subge0 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ ( 𝑀 − 𝐾 ) ↔ 𝐾 ≤ 𝑀 ) ) | |
| 11 | 8 9 10 | syl2anr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 − 𝐾 ) ↔ 𝐾 ≤ 𝑀 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑀 ) → 0 ≤ ( 𝑀 − 𝐾 ) ) |
| 13 | 7 12 | jca | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( 𝑀 − 𝐾 ) ) ) |
| 14 | 13 | exp31 | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝐾 ≤ 𝑀 → ( ( 𝑀 − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( 𝑀 − 𝐾 ) ) ) ) ) |
| 15 | 1 2 14 | syl2im | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝐾 ≤ 𝑀 → ( ( 𝑀 − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( 𝑀 − 𝐾 ) ) ) ) ) |
| 16 | 15 | 3imp | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → ( ( 𝑀 − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( 𝑀 − 𝐾 ) ) ) |
| 17 | elnn0z | ⊢ ( ( 𝑀 − 𝐾 ) ∈ ℕ0 ↔ ( ( 𝑀 − 𝐾 ) ∈ ℤ ∧ 0 ≤ ( 𝑀 − 𝐾 ) ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 − 𝐾 ) ∈ ℕ0 ) |
| 19 | elfz3nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → 𝑁 ∈ ℕ0 ) |
| 21 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) | |
| 22 | 8 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℝ ) |
| 23 | resubcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 − 𝐾 ) ∈ ℝ ) | |
| 24 | 22 9 23 | syl2an | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 𝐾 ) ∈ ℝ ) |
| 25 | 22 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 26 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 29 | nn0ge0 | ⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) | |
| 30 | 29 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ 𝐾 ) |
| 31 | subge02 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ≤ 𝐾 ↔ ( 𝑀 − 𝐾 ) ≤ 𝑀 ) ) | |
| 32 | 22 9 31 | syl2an | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → ( 0 ≤ 𝐾 ↔ ( 𝑀 − 𝐾 ) ≤ 𝑀 ) ) |
| 33 | 30 32 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 𝐾 ) ≤ 𝑀 ) |
| 34 | simpl3 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ≤ 𝑁 ) | |
| 35 | 24 25 28 33 34 | letrd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) |
| 36 | 35 | ex | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) ) |
| 37 | 21 36 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) ) |
| 38 | 1 37 | syl5com | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) ) |
| 39 | 38 | a1dd | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝐾 ≤ 𝑀 → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) ) ) |
| 40 | 39 | 3imp | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 − 𝐾 ) ≤ 𝑁 ) |
| 41 | elfz2nn0 | ⊢ ( ( 𝑀 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ↔ ( ( 𝑀 − 𝐾 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑀 − 𝐾 ) ≤ 𝑁 ) ) | |
| 42 | 18 20 40 41 | syl3anbrc | ⊢ ( ( 𝐾 ∈ ( 0 ... 𝑁 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 − 𝐾 ) ∈ ( 0 ... 𝑁 ) ) |