This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of dif1ennn using ax-pow . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1ennnALT | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝑀 ∈ ω → suc 𝑀 ∈ ω ) | |
| 2 | breq2 | ⊢ ( 𝑥 = suc 𝑀 → ( 𝐴 ≈ 𝑥 ↔ 𝐴 ≈ suc 𝑀 ) ) | |
| 3 | 2 | rspcev | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 4 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → 𝐴 ∈ Fin ) |
| 6 | 1 5 | sylan | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → 𝐴 ∈ Fin ) |
| 7 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ) | |
| 8 | isfi | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ↔ ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐴 ∈ Fin → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) |
| 12 | en2sn | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ V ) → { 𝑋 } ≈ { 𝑥 } ) | |
| 13 | 12 | elvd | ⊢ ( 𝑋 ∈ 𝐴 → { 𝑋 } ≈ { 𝑥 } ) |
| 14 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 15 | orddisj | ⊢ ( Ord 𝑥 → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
| 17 | incom | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ( { 𝑋 } ∩ ( 𝐴 ∖ { 𝑋 } ) ) | |
| 18 | disjdif | ⊢ ( { 𝑋 } ∩ ( 𝐴 ∖ { 𝑋 } ) ) = ∅ | |
| 19 | 17 18 | eqtri | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ |
| 20 | unen | ⊢ ( ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ { 𝑋 } ≈ { 𝑥 } ) ∧ ( ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) | |
| 21 | 20 | an4s | ⊢ ( ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ) ∧ ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
| 22 | 19 21 | mpanl2 | ⊢ ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ∧ ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
| 23 | 22 | expcom | ⊢ ( ( { 𝑋 } ≈ { 𝑥 } ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
| 24 | 13 16 23 | syl2an | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
| 25 | 24 | 3ad2antl3 | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
| 26 | difsnid | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) | |
| 27 | df-suc | ⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) | |
| 28 | 27 | eqcomi | ⊢ ( 𝑥 ∪ { 𝑥 } ) = suc 𝑥 |
| 29 | 28 | a1i | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑥 ∪ { 𝑥 } ) = suc 𝑥 ) |
| 30 | 26 29 | breq12d | ⊢ ( 𝑋 ∈ 𝐴 → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ↔ 𝐴 ≈ suc 𝑥 ) ) |
| 33 | ensym | ⊢ ( 𝐴 ≈ suc 𝑀 → suc 𝑀 ≈ 𝐴 ) | |
| 34 | entr | ⊢ ( ( suc 𝑀 ≈ 𝐴 ∧ 𝐴 ≈ suc 𝑥 ) → suc 𝑀 ≈ suc 𝑥 ) | |
| 35 | peano2 | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) | |
| 36 | nneneq | ⊢ ( ( suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω ) → ( suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥 ) ) | |
| 37 | 35 36 | sylan2 | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥 ) ) |
| 38 | 34 37 | imbitrid | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( suc 𝑀 ≈ 𝐴 ∧ 𝐴 ≈ suc 𝑥 ) → suc 𝑀 = suc 𝑥 ) ) |
| 39 | 38 | expd | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 ≈ 𝐴 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
| 40 | 33 39 | syl5 | ⊢ ( ( suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
| 41 | 1 40 | sylan | ⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ≈ suc 𝑀 ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
| 43 | 42 | an32s | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ) ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
| 44 | 43 | 3adantl3 | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥 ) ) |
| 45 | 32 44 | sylbid | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) → suc 𝑀 = suc 𝑥 ) ) |
| 46 | peano4 | ⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 ↔ 𝑀 = 𝑥 ) ) | |
| 47 | 46 | biimpd | ⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 → 𝑀 = 𝑥 ) ) |
| 48 | 47 | 3ad2antl1 | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( suc 𝑀 = suc 𝑥 → 𝑀 = 𝑥 ) ) |
| 49 | 25 45 48 | 3syld | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → 𝑀 = 𝑥 ) ) |
| 50 | breq2 | ⊢ ( 𝑀 = 𝑥 → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ↔ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 ) ) | |
| 51 | 50 | biimprcd | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝑀 = 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 52 | 49 51 | sylcom | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 53 | 52 | rexlimdva | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑥 → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) ) |
| 54 | 11 53 | mpd | ⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑀 ) |