This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uses of enp1i . (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | enp1ilem.1 | ⊢ 𝑇 = ( { 𝑥 } ∪ 𝑆 ) | |
| Assertion | enp1ilem | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → 𝐴 = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1ilem.1 | ⊢ 𝑇 = ( { 𝑥 } ∪ 𝑆 ) | |
| 2 | uneq1 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑆 ∪ { 𝑥 } ) ) | |
| 3 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) | |
| 4 | uncom | ⊢ ( 𝑆 ∪ { 𝑥 } ) = ( { 𝑥 } ∪ 𝑆 ) | |
| 5 | 4 1 | eqtr4i | ⊢ ( 𝑆 ∪ { 𝑥 } ) = 𝑇 |
| 6 | 2 3 5 | 3eqtr3g | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → ( 𝐴 ∪ { 𝑥 } ) = 𝑇 ) |
| 7 | snssi | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) | |
| 8 | ssequn2 | ⊢ ( { 𝑥 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∪ { 𝑥 } ) = 𝑇 ↔ 𝐴 = 𝑇 ) ) |
| 11 | 6 10 | imbitrid | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → 𝐴 = 𝑇 ) ) |