This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of dif1ennn using ax-pow . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1ennnALT | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( M e. _om -> suc M e. _om ) |
|
| 2 | breq2 | |- ( x = suc M -> ( A ~~ x <-> A ~~ suc M ) ) |
|
| 3 | 2 | rspcev | |- ( ( suc M e. _om /\ A ~~ suc M ) -> E. x e. _om A ~~ x ) |
| 4 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 5 | 3 4 | sylibr | |- ( ( suc M e. _om /\ A ~~ suc M ) -> A e. Fin ) |
| 6 | 1 5 | sylan | |- ( ( M e. _om /\ A ~~ suc M ) -> A e. Fin ) |
| 7 | diffi | |- ( A e. Fin -> ( A \ { X } ) e. Fin ) |
|
| 8 | isfi | |- ( ( A \ { X } ) e. Fin <-> E. x e. _om ( A \ { X } ) ~~ x ) |
|
| 9 | 7 8 | sylib | |- ( A e. Fin -> E. x e. _om ( A \ { X } ) ~~ x ) |
| 10 | 6 9 | syl | |- ( ( M e. _om /\ A ~~ suc M ) -> E. x e. _om ( A \ { X } ) ~~ x ) |
| 11 | 10 | 3adant3 | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> E. x e. _om ( A \ { X } ) ~~ x ) |
| 12 | en2sn | |- ( ( X e. A /\ x e. _V ) -> { X } ~~ { x } ) |
|
| 13 | 12 | elvd | |- ( X e. A -> { X } ~~ { x } ) |
| 14 | nnord | |- ( x e. _om -> Ord x ) |
|
| 15 | orddisj | |- ( Ord x -> ( x i^i { x } ) = (/) ) |
|
| 16 | 14 15 | syl | |- ( x e. _om -> ( x i^i { x } ) = (/) ) |
| 17 | incom | |- ( ( A \ { X } ) i^i { X } ) = ( { X } i^i ( A \ { X } ) ) |
|
| 18 | disjdif | |- ( { X } i^i ( A \ { X } ) ) = (/) |
|
| 19 | 17 18 | eqtri | |- ( ( A \ { X } ) i^i { X } ) = (/) |
| 20 | unen | |- ( ( ( ( A \ { X } ) ~~ x /\ { X } ~~ { x } ) /\ ( ( ( A \ { X } ) i^i { X } ) = (/) /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
|
| 21 | 20 | an4s | |- ( ( ( ( A \ { X } ) ~~ x /\ ( ( A \ { X } ) i^i { X } ) = (/) ) /\ ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
| 22 | 19 21 | mpanl2 | |- ( ( ( A \ { X } ) ~~ x /\ ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) |
| 23 | 22 | expcom | |- ( ( { X } ~~ { x } /\ ( x i^i { x } ) = (/) ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
| 24 | 13 16 23 | syl2an | |- ( ( X e. A /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
| 25 | 24 | 3ad2antl3 | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) ) ) |
| 26 | difsnid | |- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
|
| 27 | df-suc | |- suc x = ( x u. { x } ) |
|
| 28 | 27 | eqcomi | |- ( x u. { x } ) = suc x |
| 29 | 28 | a1i | |- ( X e. A -> ( x u. { x } ) = suc x ) |
| 30 | 26 29 | breq12d | |- ( X e. A -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
| 31 | 30 | 3ad2ant3 | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
| 32 | 31 | adantr | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) <-> A ~~ suc x ) ) |
| 33 | ensym | |- ( A ~~ suc M -> suc M ~~ A ) |
|
| 34 | entr | |- ( ( suc M ~~ A /\ A ~~ suc x ) -> suc M ~~ suc x ) |
|
| 35 | peano2 | |- ( x e. _om -> suc x e. _om ) |
|
| 36 | nneneq | |- ( ( suc M e. _om /\ suc x e. _om ) -> ( suc M ~~ suc x <-> suc M = suc x ) ) |
|
| 37 | 35 36 | sylan2 | |- ( ( suc M e. _om /\ x e. _om ) -> ( suc M ~~ suc x <-> suc M = suc x ) ) |
| 38 | 34 37 | imbitrid | |- ( ( suc M e. _om /\ x e. _om ) -> ( ( suc M ~~ A /\ A ~~ suc x ) -> suc M = suc x ) ) |
| 39 | 38 | expd | |- ( ( suc M e. _om /\ x e. _om ) -> ( suc M ~~ A -> ( A ~~ suc x -> suc M = suc x ) ) ) |
| 40 | 33 39 | syl5 | |- ( ( suc M e. _om /\ x e. _om ) -> ( A ~~ suc M -> ( A ~~ suc x -> suc M = suc x ) ) ) |
| 41 | 1 40 | sylan | |- ( ( M e. _om /\ x e. _om ) -> ( A ~~ suc M -> ( A ~~ suc x -> suc M = suc x ) ) ) |
| 42 | 41 | imp | |- ( ( ( M e. _om /\ x e. _om ) /\ A ~~ suc M ) -> ( A ~~ suc x -> suc M = suc x ) ) |
| 43 | 42 | an32s | |- ( ( ( M e. _om /\ A ~~ suc M ) /\ x e. _om ) -> ( A ~~ suc x -> suc M = suc x ) ) |
| 44 | 43 | 3adantl3 | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( A ~~ suc x -> suc M = suc x ) ) |
| 45 | 32 44 | sylbid | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( x u. { x } ) -> suc M = suc x ) ) |
| 46 | peano4 | |- ( ( M e. _om /\ x e. _om ) -> ( suc M = suc x <-> M = x ) ) |
|
| 47 | 46 | biimpd | |- ( ( M e. _om /\ x e. _om ) -> ( suc M = suc x -> M = x ) ) |
| 48 | 47 | 3ad2antl1 | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( suc M = suc x -> M = x ) ) |
| 49 | 25 45 48 | 3syld | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> M = x ) ) |
| 50 | breq2 | |- ( M = x -> ( ( A \ { X } ) ~~ M <-> ( A \ { X } ) ~~ x ) ) |
|
| 51 | 50 | biimprcd | |- ( ( A \ { X } ) ~~ x -> ( M = x -> ( A \ { X } ) ~~ M ) ) |
| 52 | 49 51 | sylcom | |- ( ( ( M e. _om /\ A ~~ suc M /\ X e. A ) /\ x e. _om ) -> ( ( A \ { X } ) ~~ x -> ( A \ { X } ) ~~ M ) ) |
| 53 | 52 | rexlimdva | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( E. x e. _om ( A \ { X } ) ~~ x -> ( A \ { X } ) ~~ M ) ) |
| 54 | 11 53 | mpd | |- ( ( M e. _om /\ A ~~ suc M /\ X e. A ) -> ( A \ { X } ) ~~ M ) |