This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X . Example 3.20(2) of Adamek p. 30. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| diag1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| diag1.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | diag1 | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diag1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 6 | diag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 7 | diag1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 8 | diag1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 9 | diag1.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 10 | relfunc | ⊢ Rel ( 𝐷 Func 𝐶 ) | |
| 11 | 1 2 3 4 5 6 | diag1cl | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |
| 12 | 1st2nd | ⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 14 | 1st2ndbr | ⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) | |
| 15 | 10 11 14 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 16 | 7 4 15 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ) |
| 17 | 16 | feqmptd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 19 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 20 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 22 | 1 18 19 4 20 6 7 21 | diag11 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) = 𝑋 ) |
| 23 | 22 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 24 | 17 23 | eqtrd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 25 | 7 15 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ) |
| 26 | fnov | ⊢ ( ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) ) |
| 28 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 29 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 30 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 31 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 32 | 7 8 28 29 30 31 | funcf2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) : ( 𝑦 𝐽 𝑧 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑧 ) ) ) |
| 33 | 32 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) ) ) |
| 34 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝜑 ) | |
| 35 | 34 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐶 ∈ Cat ) |
| 36 | 34 3 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝐷 ∈ Cat ) |
| 37 | 34 5 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑋 ∈ 𝐴 ) |
| 38 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑦 ∈ 𝐵 ) |
| 39 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑧 ∈ 𝐵 ) |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) | |
| 41 | 1 35 36 4 37 6 7 38 8 9 39 40 | diag12 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) = ( 1 ‘ 𝑋 ) ) |
| 42 | 41 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ‘ 𝑓 ) ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 43 | 33 42 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 44 | 43 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑦 ( 2nd ‘ 𝐾 ) 𝑧 ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) ) |
| 45 | 27 44 | eqtrd | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) ) |
| 46 | 24 45 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |
| 47 | 13 46 | eqtrd | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |