This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X . Example 3.20(2) of Adamek p. 30. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1.l | |- L = ( C DiagFunc D ) |
|
| diag1.c | |- ( ph -> C e. Cat ) |
||
| diag1.d | |- ( ph -> D e. Cat ) |
||
| diag1.a | |- A = ( Base ` C ) |
||
| diag1.x | |- ( ph -> X e. A ) |
||
| diag1.k | |- K = ( ( 1st ` L ) ` X ) |
||
| diag1.b | |- B = ( Base ` D ) |
||
| diag1.j | |- J = ( Hom ` D ) |
||
| diag1.i | |- .1. = ( Id ` C ) |
||
| Assertion | diag1 | |- ( ph -> K = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag1.c | |- ( ph -> C e. Cat ) |
|
| 3 | diag1.d | |- ( ph -> D e. Cat ) |
|
| 4 | diag1.a | |- A = ( Base ` C ) |
|
| 5 | diag1.x | |- ( ph -> X e. A ) |
|
| 6 | diag1.k | |- K = ( ( 1st ` L ) ` X ) |
|
| 7 | diag1.b | |- B = ( Base ` D ) |
|
| 8 | diag1.j | |- J = ( Hom ` D ) |
|
| 9 | diag1.i | |- .1. = ( Id ` C ) |
|
| 10 | relfunc | |- Rel ( D Func C ) |
|
| 11 | 1 2 3 4 5 6 | diag1cl | |- ( ph -> K e. ( D Func C ) ) |
| 12 | 1st2nd | |- ( ( Rel ( D Func C ) /\ K e. ( D Func C ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
|
| 13 | 10 11 12 | sylancr | |- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 14 | 1st2ndbr | |- ( ( Rel ( D Func C ) /\ K e. ( D Func C ) ) -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
|
| 15 | 10 11 14 | sylancr | |- ( ph -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 16 | 7 4 15 | funcf1 | |- ( ph -> ( 1st ` K ) : B --> A ) |
| 17 | 16 | feqmptd | |- ( ph -> ( 1st ` K ) = ( y e. B |-> ( ( 1st ` K ) ` y ) ) ) |
| 18 | 2 | adantr | |- ( ( ph /\ y e. B ) -> C e. Cat ) |
| 19 | 3 | adantr | |- ( ( ph /\ y e. B ) -> D e. Cat ) |
| 20 | 5 | adantr | |- ( ( ph /\ y e. B ) -> X e. A ) |
| 21 | simpr | |- ( ( ph /\ y e. B ) -> y e. B ) |
|
| 22 | 1 18 19 4 20 6 7 21 | diag11 | |- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = X ) |
| 23 | 22 | mpteq2dva | |- ( ph -> ( y e. B |-> ( ( 1st ` K ) ` y ) ) = ( y e. B |-> X ) ) |
| 24 | 17 23 | eqtrd | |- ( ph -> ( 1st ` K ) = ( y e. B |-> X ) ) |
| 25 | 7 15 | funcfn2 | |- ( ph -> ( 2nd ` K ) Fn ( B X. B ) ) |
| 26 | fnov | |- ( ( 2nd ` K ) Fn ( B X. B ) <-> ( 2nd ` K ) = ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) ) |
|
| 27 | 25 26 | sylib | |- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) ) |
| 28 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 29 | 15 | 3ad2ant1 | |- ( ( ph /\ y e. B /\ z e. B ) -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 30 | simp2 | |- ( ( ph /\ y e. B /\ z e. B ) -> y e. B ) |
|
| 31 | simp3 | |- ( ( ph /\ y e. B /\ z e. B ) -> z e. B ) |
|
| 32 | 7 8 28 29 30 31 | funcf2 | |- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) : ( y J z ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` C ) ( ( 1st ` K ) ` z ) ) ) |
| 33 | 32 | feqmptd | |- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) = ( f e. ( y J z ) |-> ( ( y ( 2nd ` K ) z ) ` f ) ) ) |
| 34 | simpl1 | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> ph ) |
|
| 35 | 34 2 | syl | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> C e. Cat ) |
| 36 | 34 3 | syl | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> D e. Cat ) |
| 37 | 34 5 | syl | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> X e. A ) |
| 38 | 30 | adantr | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> y e. B ) |
| 39 | 31 | adantr | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> z e. B ) |
| 40 | simpr | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> f e. ( y J z ) ) |
|
| 41 | 1 35 36 4 37 6 7 38 8 9 39 40 | diag12 | |- ( ( ( ph /\ y e. B /\ z e. B ) /\ f e. ( y J z ) ) -> ( ( y ( 2nd ` K ) z ) ` f ) = ( .1. ` X ) ) |
| 42 | 41 | mpteq2dva | |- ( ( ph /\ y e. B /\ z e. B ) -> ( f e. ( y J z ) |-> ( ( y ( 2nd ` K ) z ) ` f ) ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 43 | 33 42 | eqtrd | |- ( ( ph /\ y e. B /\ z e. B ) -> ( y ( 2nd ` K ) z ) = ( f e. ( y J z ) |-> ( .1. ` X ) ) ) |
| 44 | 43 | mpoeq3dva | |- ( ph -> ( y e. B , z e. B |-> ( y ( 2nd ` K ) z ) ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) ) |
| 45 | 27 44 | eqtrd | |- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) ) |
| 46 | 24 45 | opeq12d | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |
| 47 | 13 46 | eqtrd | |- ( ph -> K = <. ( y e. B |-> X ) , ( y e. B , z e. B |-> ( f e. ( y J z ) |-> ( .1. ` X ) ) ) >. ) |