This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An expression for the upper integers that start at N that is analogous to dfnn2 for positive integers. (Contributed by NM, 6-Jul-2005) (Proof shortened by Mario Carneiro, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfuzi.1 | ⊢ 𝑁 ∈ ℤ | |
| Assertion | dfuzi | ⊢ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } = ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuzi.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | ssintab | ⊢ ( { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ⊆ ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ⊆ 𝑥 ) ) | |
| 3 | 1 | peano5uzi | ⊢ ( ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ⊆ 𝑥 ) |
| 4 | 2 3 | mpgbir | ⊢ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ⊆ ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 5 | 1 | zrei | ⊢ 𝑁 ∈ ℝ |
| 6 | 5 | leidi | ⊢ 𝑁 ≤ 𝑁 |
| 7 | breq2 | ⊢ ( 𝑧 = 𝑁 → ( 𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝑁 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ↔ ( 𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁 ) ) |
| 9 | 1 6 8 | mpbir2an | ⊢ 𝑁 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } |
| 10 | peano2uz2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) → ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) | |
| 11 | 1 10 | mpan | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } → ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } |
| 13 | zex | ⊢ ℤ ∈ V | |
| 14 | 13 | rabex | ⊢ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∈ V |
| 15 | eleq2 | ⊢ ( 𝑥 = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } → ( 𝑁 ∈ 𝑥 ↔ 𝑁 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) | |
| 16 | eleq2 | ⊢ ( 𝑥 = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) | |
| 17 | 16 | raleqbi1dv | ⊢ ( 𝑥 = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑥 = { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } → ( ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 𝑁 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) ) |
| 19 | 14 18 | elab | ⊢ ( { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∈ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ( 𝑁 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ( 𝑦 + 1 ) ∈ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) ) |
| 20 | 9 12 19 | mpbir2an | ⊢ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∈ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 21 | intss1 | ⊢ ( { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ∈ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } ) | |
| 22 | 20 21 | ax-mp | ⊢ ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } |
| 23 | 4 22 | eqssi | ⊢ { 𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧 } = ∩ { 𝑥 ∣ ( 𝑁 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |