This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2uz2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ) → ( 𝐵 + 1 ) ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) ∈ ℤ ) | |
| 2 | 1 | ad2antrl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℤ ) |
| 3 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 4 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 5 | lep1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ ( 𝐵 + 1 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ ( 𝐵 + 1 ) ) |
| 7 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 8 | 7 | ancli | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) |
| 9 | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 1 ) ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) | |
| 10 | 9 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 1 ) ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 11 | 8 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ ( 𝐵 + 1 ) ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 12 | 6 11 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 13 | 3 4 12 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 14 | 13 | impr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ≤ ( 𝐵 + 1 ) ) |
| 15 | 2 14 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) → ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 16 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 17 | 16 | elrab | ⊢ ( 𝐵 ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) |
| 18 | 17 | anbi2i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ) ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 19 | breq2 | ⊢ ( 𝑥 = ( 𝐵 + 1 ) → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ ( 𝐵 + 1 ) ) ) | |
| 20 | 19 | elrab | ⊢ ( ( 𝐵 + 1 ) ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ↔ ( ( 𝐵 + 1 ) ∈ ℤ ∧ 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 21 | 15 18 20 | 3imtr4i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ) → ( 𝐵 + 1 ) ∈ { 𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥 } ) |