This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013) (Revised by Mario Carneiro, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnn2 | ⊢ ℕ = ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex | ⊢ 1 ∈ V | |
| 2 | 1 | elintab | ⊢ ( 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 ) ) |
| 3 | simpl | ⊢ ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 ) | |
| 4 | 2 3 | mpgbir | ⊢ 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 5 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 7 | 6 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 → ( 𝑧 ∈ 𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 9 | 8 | a2i | ⊢ ( ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 10 | 9 | alimi | ⊢ ( ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 11 | vex | ⊢ 𝑧 ∈ V | |
| 12 | 11 | elintab | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 13 | ovex | ⊢ ( 𝑧 + 1 ) ∈ V | |
| 14 | 13 | elintab | ⊢ ( ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
| 15 | 10 12 14 | 3imtr4i | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) |
| 16 | 15 | rgen | ⊢ ∀ 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 17 | peano5nni | ⊢ ( ( 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ∧ ∀ 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) → ℕ ⊆ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) | |
| 18 | 4 16 17 | mp2an | ⊢ ℕ ⊆ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 19 | 1nn | ⊢ 1 ∈ ℕ | |
| 20 | peano2nn | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 21 | 20 | rgen | ⊢ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ |
| 22 | nnex | ⊢ ℕ ∈ V | |
| 23 | eleq2 | ⊢ ( 𝑥 = ℕ → ( 1 ∈ 𝑥 ↔ 1 ∈ ℕ ) ) | |
| 24 | eleq2 | ⊢ ( 𝑥 = ℕ → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ ℕ ) ) | |
| 25 | 24 | raleqbi1dv | ⊢ ( 𝑥 = ℕ → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( 𝑥 = ℕ → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) ) |
| 27 | 22 26 | elab | ⊢ ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
| 28 | 19 21 27 | mpbir2an | ⊢ ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 29 | intss1 | ⊢ ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ ) | |
| 30 | 28 29 | ax-mp | ⊢ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ |
| 31 | 18 30 | eqssi | ⊢ ℕ = ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |