This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of tpos . (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftpos4 | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 2 | relcnv | ⊢ Rel ◡ dom 𝐹 | |
| 3 | df-rel | ⊢ ( Rel ◡ dom 𝐹 ↔ ◡ dom 𝐹 ⊆ ( V × V ) ) | |
| 4 | 2 3 | mpbi | ⊢ ◡ dom 𝐹 ⊆ ( V × V ) |
| 5 | unss1 | ⊢ ( ◡ dom 𝐹 ⊆ ( V × V ) → ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) ) | |
| 6 | resmpt | ⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) → ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 7 | 4 5 6 | mp2b | ⊢ ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 8 | resss | ⊢ ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 9 | 7 8 | eqsstrri | ⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 10 | coss2 | ⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 12 | 1 11 | eqsstri | ⊢ tpos 𝐹 ⊆ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 13 | relco | ⊢ Rel ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 14 | vex | ⊢ 𝑦 ∈ V | |
| 15 | vex | ⊢ 𝑧 ∈ V | |
| 16 | 14 15 | opelco | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↔ ∃ 𝑤 ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) ) |
| 17 | vex | ⊢ 𝑤 ∈ V | |
| 18 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↔ 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ) ) | |
| 19 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 20 | 19 | cnveqd | ⊢ ( 𝑥 = 𝑦 → ◡ { 𝑥 } = ◡ { 𝑦 } ) |
| 21 | 20 | unieqd | ⊢ ( 𝑥 = 𝑦 → ∪ ◡ { 𝑥 } = ∪ ◡ { 𝑦 } ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 = ∪ ◡ { 𝑥 } ↔ 𝑧 = ∪ ◡ { 𝑦 } ) ) |
| 23 | 18 22 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑥 } ) ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑦 } ) ) ) |
| 24 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ∪ ◡ { 𝑦 } ↔ 𝑤 = ∪ ◡ { 𝑦 } ) ) | |
| 25 | 24 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑦 } ) ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ) ) |
| 26 | df-mpt | ⊢ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 = ∪ ◡ { 𝑥 } ) } | |
| 27 | 14 17 23 25 26 | brab | ⊢ ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ↔ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ) |
| 28 | simplr | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 = ∪ ◡ { 𝑦 } ) | |
| 29 | 17 15 | breldm | ⊢ ( 𝑤 𝐹 𝑧 → 𝑤 ∈ dom 𝐹 ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 ∈ dom 𝐹 ) |
| 31 | 28 30 | eqeltrrd | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ∪ ◡ { 𝑦 } ∈ dom 𝐹 ) |
| 32 | elvv | ⊢ ( 𝑦 ∈ ( V × V ) ↔ ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 ) | |
| 33 | opswap | ⊢ ∪ ◡ { 〈 𝑧 , 𝑤 〉 } = 〈 𝑤 , 𝑧 〉 | |
| 34 | 33 | eleq1i | ⊢ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑤 , 𝑧 〉 ∈ dom 𝐹 ) |
| 35 | 15 17 | opelcnv | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ↔ 〈 𝑤 , 𝑧 〉 ∈ dom 𝐹 ) |
| 36 | 34 35 | bitr4i | ⊢ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) |
| 37 | sneq | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → { 𝑦 } = { 〈 𝑧 , 𝑤 〉 } ) | |
| 38 | 37 | cnveqd | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ◡ { 𝑦 } = ◡ { 〈 𝑧 , 𝑤 〉 } ) |
| 39 | 38 | unieqd | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ∪ ◡ { 𝑦 } = ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ) |
| 40 | 39 | eleq1d | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ) ) |
| 41 | eleq1 | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 𝑦 ∈ ◡ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) ) | |
| 42 | 40 41 | bibi12d | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ↔ ( ∪ ◡ { 〈 𝑧 , 𝑤 〉 } ∈ dom 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ◡ dom 𝐹 ) ) ) |
| 43 | 36 42 | mpbiri | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 44 | 43 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 𝑦 = 〈 𝑧 , 𝑤 〉 → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 45 | 32 44 | sylbi | ⊢ ( 𝑦 ∈ ( V × V ) → ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 ↔ 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 46 | 45 | biimpcd | ⊢ ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ◡ dom 𝐹 ) ) |
| 47 | elun1 | ⊢ ( 𝑦 ∈ ◡ dom 𝐹 → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) | |
| 48 | 46 47 | syl6 | ⊢ ( ∪ ◡ { 𝑦 } ∈ dom 𝐹 → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 49 | 31 48 | syl | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( V × V ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 50 | elun2 | ⊢ ( 𝑦 ∈ { ∅ } → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) | |
| 51 | 50 | a1i | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ { ∅ } → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) ) |
| 52 | simpll | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ) | |
| 53 | elun | ⊢ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ↔ ( 𝑦 ∈ ( V × V ) ∨ 𝑦 ∈ { ∅ } ) ) | |
| 54 | 52 53 | sylib | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( V × V ) ∨ 𝑦 ∈ { ∅ } ) ) |
| 55 | 49 51 54 | mpjaod | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 56 | simpr | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → 𝑤 𝐹 𝑧 ) | |
| 57 | 28 56 | eqbrtrrd | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ∪ ◡ { 𝑦 } 𝐹 𝑧 ) |
| 58 | 55 57 | jca | ⊢ ( ( ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑤 = ∪ ◡ { 𝑦 } ) ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 59 | 27 58 | sylanb | ⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 60 | brtpos2 | ⊢ ( 𝑧 ∈ V → ( 𝑦 tpos 𝐹 𝑧 ↔ ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) ) | |
| 61 | 15 60 | ax-mp | ⊢ ( 𝑦 tpos 𝐹 𝑧 ↔ ( 𝑦 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑦 } 𝐹 𝑧 ) ) |
| 62 | 59 61 | sylibr | ⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 𝑦 tpos 𝐹 𝑧 ) |
| 63 | df-br | ⊢ ( 𝑦 tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) | |
| 64 | 62 63 | sylib | ⊢ ( ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 65 | 64 | exlimiv | ⊢ ( ∃ 𝑤 ( 𝑦 ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) 𝑤 ∧ 𝑤 𝐹 𝑧 ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 66 | 16 65 | sylbi | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) → 〈 𝑦 , 𝑧 〉 ∈ tpos 𝐹 ) |
| 67 | 13 66 | relssi | ⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ tpos 𝐹 |
| 68 | 12 67 | eqssi | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |