This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the transposition of a function, which is a function G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | ⊢ 𝐹 | |
| 1 | 0 | ctpos | ⊢ tpos 𝐹 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | 0 | cdm | ⊢ dom 𝐹 |
| 4 | 3 | ccnv | ⊢ ◡ dom 𝐹 |
| 5 | c0 | ⊢ ∅ | |
| 6 | 5 | csn | ⊢ { ∅ } |
| 7 | 4 6 | cun | ⊢ ( ◡ dom 𝐹 ∪ { ∅ } ) |
| 8 | 2 | cv | ⊢ 𝑥 |
| 9 | 8 | csn | ⊢ { 𝑥 } |
| 10 | 9 | ccnv | ⊢ ◡ { 𝑥 } |
| 11 | 10 | cuni | ⊢ ∪ ◡ { 𝑥 } |
| 12 | 2 7 11 | cmpt | ⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 13 | 0 12 | ccom | ⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 14 | 1 13 | wceq | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |