This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsup2 | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = ∪ ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sup | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } | |
| 2 | dfrab3 | ⊢ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ( 𝐴 ∩ { 𝑥 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) | |
| 3 | eqabcb | ⊢ ( { 𝑥 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ↔ ∀ 𝑥 ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ 𝑥 ∈ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ) | |
| 6 | 4 5 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ↔ ¬ 𝑥 ∈ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 7 | 4 | elima | ⊢ ( 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝑅 𝑥 ) |
| 8 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝑅 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ) | |
| 9 | 7 8 | bitri | ⊢ ( 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ) |
| 10 | 4 | elima | ⊢ ( 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ↔ ∃ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) 𝑦 𝑅 𝑥 ) |
| 11 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) 𝑦 𝑅 𝑥 ↔ ¬ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) | |
| 12 | 10 11 | bitri | ⊢ ( 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ↔ ¬ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) |
| 13 | 9 12 | orbi12i | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ∨ 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ↔ ( ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∨ ¬ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ) |
| 14 | elun | ⊢ ( 𝑥 ∈ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ↔ ( 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ∨ 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) | |
| 15 | ianor | ⊢ ( ¬ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ↔ ( ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∨ ¬ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑥 ∈ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ↔ ¬ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ) |
| 17 | 16 | con2bii | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 ∈ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 18 | vex | ⊢ 𝑦 ∈ V | |
| 19 | 18 4 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 20 | 19 | notbii | ⊢ ( ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) |
| 21 | 20 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) |
| 22 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ) → ¬ 𝑦 𝑅 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 → ( ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) → ¬ 𝑦 𝑅 𝑥 ) ) ) | |
| 23 | eldif | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ) ) | |
| 24 | 23 | imbi1i | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) → ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ) → ¬ 𝑦 𝑅 𝑥 ) ) |
| 25 | 18 | elima | ⊢ ( 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑧 ◡ 𝑅 𝑦 ) |
| 26 | vex | ⊢ 𝑧 ∈ V | |
| 27 | 26 18 | brcnv | ⊢ ( 𝑧 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑧 ) |
| 28 | 27 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑧 ◡ 𝑅 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) |
| 29 | 25 28 | bitri | ⊢ ( 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) |
| 30 | 29 | imbi2i | ⊢ ( ( 𝑦 𝑅 𝑥 → 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) |
| 31 | con34b | ⊢ ( ( 𝑦 𝑅 𝑥 → 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) → ¬ 𝑦 𝑅 𝑥 ) ) | |
| 32 | 30 31 | bitr3i | ⊢ ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ↔ ( ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) → ¬ 𝑦 𝑅 𝑥 ) ) |
| 33 | 32 | imbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( ¬ 𝑦 ∈ ( ◡ 𝑅 “ 𝐵 ) → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 34 | 22 24 33 | 3bitr4i | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) → ¬ 𝑦 𝑅 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 35 | 34 | ralbii2 | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) |
| 36 | 21 35 | anbi12i | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 ◡ 𝑅 𝑥 ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ¬ 𝑦 𝑅 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 37 | 6 17 36 | 3bitr2ri | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ 𝑥 ∈ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ) |
| 38 | 3 37 | mpgbir | ⊢ { 𝑥 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 39 | 38 | ineq2i | ⊢ ( 𝐴 ∩ { 𝑥 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) = ( 𝐴 ∩ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ) |
| 40 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) ) = ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) | |
| 41 | 39 40 | eqtri | ⊢ ( 𝐴 ∩ { 𝑥 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) = ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 42 | 2 41 | eqtri | ⊢ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 43 | 42 | unieqi | ⊢ ∪ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ∪ ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |
| 44 | 1 43 | eqtri | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = ∪ ( 𝐴 ∖ ( ( ◡ 𝑅 “ 𝐵 ) ∪ ( 𝑅 “ ( 𝐴 ∖ ( ◡ 𝑅 “ 𝐵 ) ) ) ) ) |