This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the supremum of class A . It is meaningful when R is a relation that strictly orders B and when the supremum exists. For example, R could be 'less than', B could be the set of real numbers, and A could be the set of all positive reals whose square is less than 2; in this case the supremum is defined as the square root of 2 per sqrtval . See dfsup2 for alternate definition not requiring dummy variables. (Contributed by NM, 22-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sup | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | cR | ⊢ 𝑅 | |
| 3 | 0 1 2 | csup | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) |
| 4 | vx | ⊢ 𝑥 | |
| 5 | vy | ⊢ 𝑦 | |
| 6 | 4 | cv | ⊢ 𝑥 |
| 7 | 5 | cv | ⊢ 𝑦 |
| 8 | 6 7 2 | wbr | ⊢ 𝑥 𝑅 𝑦 |
| 9 | 8 | wn | ⊢ ¬ 𝑥 𝑅 𝑦 |
| 10 | 9 5 0 | wral | ⊢ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 |
| 11 | 7 6 2 | wbr | ⊢ 𝑦 𝑅 𝑥 |
| 12 | vz | ⊢ 𝑧 | |
| 13 | 12 | cv | ⊢ 𝑧 |
| 14 | 7 13 2 | wbr | ⊢ 𝑦 𝑅 𝑧 |
| 15 | 14 12 0 | wrex | ⊢ ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 |
| 16 | 11 15 | wi | ⊢ ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) |
| 17 | 16 5 1 | wral | ⊢ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) |
| 18 | 10 17 | wa | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) |
| 19 | 18 4 1 | crab | ⊢ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } |
| 20 | 19 | cuni | ⊢ ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } |
| 21 | 3 20 | wceq | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } |