This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsucmap3 | ⊢ SucMap = ( I AdjLiftMap V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( 𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛 ) | |
| 2 | 1 | opabbii | ⊢ { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| 3 | df-adjliftmap | ⊢ ( I AdjLiftMap V ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) | |
| 4 | dmresv | ⊢ dom ( ( I ∪ ◡ E ) ↾ V ) = dom ( I ∪ ◡ E ) | |
| 5 | dmun | ⊢ dom ( I ∪ ◡ E ) = ( dom I ∪ dom ◡ E ) | |
| 6 | dmi | ⊢ dom I = V | |
| 7 | dmcnvep | ⊢ dom ◡ E = ( V ∖ { ∅ } ) | |
| 8 | 6 7 | uneq12i | ⊢ ( dom I ∪ dom ◡ E ) = ( V ∪ ( V ∖ { ∅ } ) ) |
| 9 | undifabs | ⊢ ( V ∪ ( V ∖ { ∅ } ) ) = V | |
| 10 | 5 8 9 | 3eqtri | ⊢ dom ( I ∪ ◡ E ) = V |
| 11 | 4 10 | eqtri | ⊢ dom ( ( I ∪ ◡ E ) ↾ V ) = V |
| 12 | orcom | ⊢ ( ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ↔ ( 𝑛 ∈ 𝑚 ∨ 𝑛 ∈ { 𝑚 } ) ) | |
| 13 | elecALTV | ⊢ ( ( 𝑚 ∈ V ∧ 𝑛 ∈ V ) → ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑚 ( I ∪ ◡ E ) 𝑛 ) ) | |
| 14 | 13 | el2v | ⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑚 ( I ∪ ◡ E ) 𝑛 ) |
| 15 | brun | ⊢ ( 𝑚 ( I ∪ ◡ E ) 𝑛 ↔ ( 𝑚 I 𝑛 ∨ 𝑚 ◡ E 𝑛 ) ) | |
| 16 | equcom | ⊢ ( 𝑚 = 𝑛 ↔ 𝑛 = 𝑚 ) | |
| 17 | ideqg | ⊢ ( 𝑛 ∈ V → ( 𝑚 I 𝑛 ↔ 𝑚 = 𝑛 ) ) | |
| 18 | 17 | elv | ⊢ ( 𝑚 I 𝑛 ↔ 𝑚 = 𝑛 ) |
| 19 | velsn | ⊢ ( 𝑛 ∈ { 𝑚 } ↔ 𝑛 = 𝑚 ) | |
| 20 | 16 18 19 | 3bitr4i | ⊢ ( 𝑚 I 𝑛 ↔ 𝑛 ∈ { 𝑚 } ) |
| 21 | brcnvep | ⊢ ( 𝑚 ∈ V → ( 𝑚 ◡ E 𝑛 ↔ 𝑛 ∈ 𝑚 ) ) | |
| 22 | 21 | elv | ⊢ ( 𝑚 ◡ E 𝑛 ↔ 𝑛 ∈ 𝑚 ) |
| 23 | 20 22 | orbi12i | ⊢ ( ( 𝑚 I 𝑛 ∨ 𝑚 ◡ E 𝑛 ) ↔ ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ) |
| 24 | 14 15 23 | 3bitri | ⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ ( 𝑛 ∈ { 𝑚 } ∨ 𝑛 ∈ 𝑚 ) ) |
| 25 | elun | ⊢ ( 𝑛 ∈ ( 𝑚 ∪ { 𝑚 } ) ↔ ( 𝑛 ∈ 𝑚 ∨ 𝑛 ∈ { 𝑚 } ) ) | |
| 26 | 12 24 25 | 3bitr4i | ⊢ ( 𝑛 ∈ [ 𝑚 ] ( I ∪ ◡ E ) ↔ 𝑛 ∈ ( 𝑚 ∪ { 𝑚 } ) ) |
| 27 | 26 | eqriv | ⊢ [ 𝑚 ] ( I ∪ ◡ E ) = ( 𝑚 ∪ { 𝑚 } ) |
| 28 | reli | ⊢ Rel I | |
| 29 | relcnv | ⊢ Rel ◡ E | |
| 30 | relun | ⊢ ( Rel ( I ∪ ◡ E ) ↔ ( Rel I ∧ Rel ◡ E ) ) | |
| 31 | 28 29 30 | mpbir2an | ⊢ Rel ( I ∪ ◡ E ) |
| 32 | dfrel3 | ⊢ ( Rel ( I ∪ ◡ E ) ↔ ( ( I ∪ ◡ E ) ↾ V ) = ( I ∪ ◡ E ) ) | |
| 33 | 31 32 | mpbi | ⊢ ( ( I ∪ ◡ E ) ↾ V ) = ( I ∪ ◡ E ) |
| 34 | 33 | eceq2i | ⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) = [ 𝑚 ] ( I ∪ ◡ E ) |
| 35 | df-suc | ⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) | |
| 36 | 27 34 35 | 3eqtr4i | ⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) = suc 𝑚 |
| 37 | 11 36 | mpteq12i | ⊢ ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) = ( 𝑚 ∈ V ↦ suc 𝑚 ) |
| 38 | mptv | ⊢ ( 𝑚 ∈ V ↦ suc 𝑚 ) = { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } | |
| 39 | 3 37 38 | 3eqtri | ⊢ ( I AdjLiftMap V ) = { 〈 𝑚 , 𝑛 〉 ∣ 𝑛 = suc 𝑚 } |
| 40 | df-sucmap | ⊢ SucMap = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } | |
| 41 | 2 39 40 | 3eqtr4ri | ⊢ SucMap = ( I AdjLiftMap V ) |