This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018) (Revised by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcnvep | ⊢ dom ◡ E = ( V ∖ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm | ⊢ dom ◡ E = { 𝑥 ∣ ∃ 𝑦 𝑥 ◡ E 𝑦 } | |
| 2 | brcnvep | ⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑥 ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑦 𝑥 ◡ E 𝑦 ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 ◡ E 𝑦 } = { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } |
| 6 | df-sn | ⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } | |
| 7 | 6 | difeq2i | ⊢ ( V ∖ { ∅ } ) = ( V ∖ { 𝑥 ∣ 𝑥 = ∅ } ) |
| 8 | notab | ⊢ { 𝑥 ∣ ¬ 𝑥 = ∅ } = ( V ∖ { 𝑥 ∣ 𝑥 = ∅ } ) | |
| 9 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 10 | 9 | abbii | ⊢ { 𝑥 ∣ ¬ 𝑥 = ∅ } = { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } |
| 11 | 7 8 10 | 3eqtr2ri | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } = ( V ∖ { ∅ } ) |
| 12 | 1 5 11 | 3eqtri | ⊢ dom ◡ E = ( V ∖ { ∅ } ) |