This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsucmap2 | ⊢ SucMap = ( I AdjLiftMap dom I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsucmap3 | ⊢ SucMap = ( I AdjLiftMap V ) | |
| 2 | dmi | ⊢ dom I = V | |
| 3 | 2 | reseq2i | ⊢ ( ( I ∪ ◡ E ) ↾ dom I ) = ( ( I ∪ ◡ E ) ↾ V ) |
| 4 | 3 | dmeqi | ⊢ dom ( ( I ∪ ◡ E ) ↾ dom I ) = dom ( ( I ∪ ◡ E ) ↾ V ) |
| 5 | 3 | eceq2i | ⊢ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) = [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) |
| 6 | 4 5 | mpteq12i | ⊢ ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ dom I ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) |
| 7 | df-adjliftmap | ⊢ ( I AdjLiftMap dom I ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ dom I ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ dom I ) ) | |
| 8 | df-adjliftmap | ⊢ ( I AdjLiftMap V ) = ( 𝑚 ∈ dom ( ( I ∪ ◡ E ) ↾ V ) ↦ [ 𝑚 ] ( ( I ∪ ◡ E ) ↾ V ) ) | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ ( I AdjLiftMap dom I ) = ( I AdjLiftMap V ) |
| 10 | 1 9 | eqtr4i | ⊢ SucMap = ( I AdjLiftMap dom I ) |