This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsucmap3 | |- SucMap = ( _I AdjLiftMap _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( n = suc m <-> suc m = n ) |
|
| 2 | 1 | opabbii | |- { <. m , n >. | n = suc m } = { <. m , n >. | suc m = n } |
| 3 | df-adjliftmap | |- ( _I AdjLiftMap _V ) = ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) |
|
| 4 | dmresv | |- dom ( ( _I u. `' _E ) |` _V ) = dom ( _I u. `' _E ) |
|
| 5 | dmun | |- dom ( _I u. `' _E ) = ( dom _I u. dom `' _E ) |
|
| 6 | dmi | |- dom _I = _V |
|
| 7 | dmcnvep | |- dom `' _E = ( _V \ { (/) } ) |
|
| 8 | 6 7 | uneq12i | |- ( dom _I u. dom `' _E ) = ( _V u. ( _V \ { (/) } ) ) |
| 9 | undifabs | |- ( _V u. ( _V \ { (/) } ) ) = _V |
|
| 10 | 5 8 9 | 3eqtri | |- dom ( _I u. `' _E ) = _V |
| 11 | 4 10 | eqtri | |- dom ( ( _I u. `' _E ) |` _V ) = _V |
| 12 | orcom | |- ( ( n e. { m } \/ n e. m ) <-> ( n e. m \/ n e. { m } ) ) |
|
| 13 | elecALTV | |- ( ( m e. _V /\ n e. _V ) -> ( n e. [ m ] ( _I u. `' _E ) <-> m ( _I u. `' _E ) n ) ) |
|
| 14 | 13 | el2v | |- ( n e. [ m ] ( _I u. `' _E ) <-> m ( _I u. `' _E ) n ) |
| 15 | brun | |- ( m ( _I u. `' _E ) n <-> ( m _I n \/ m `' _E n ) ) |
|
| 16 | equcom | |- ( m = n <-> n = m ) |
|
| 17 | ideqg | |- ( n e. _V -> ( m _I n <-> m = n ) ) |
|
| 18 | 17 | elv | |- ( m _I n <-> m = n ) |
| 19 | velsn | |- ( n e. { m } <-> n = m ) |
|
| 20 | 16 18 19 | 3bitr4i | |- ( m _I n <-> n e. { m } ) |
| 21 | brcnvep | |- ( m e. _V -> ( m `' _E n <-> n e. m ) ) |
|
| 22 | 21 | elv | |- ( m `' _E n <-> n e. m ) |
| 23 | 20 22 | orbi12i | |- ( ( m _I n \/ m `' _E n ) <-> ( n e. { m } \/ n e. m ) ) |
| 24 | 14 15 23 | 3bitri | |- ( n e. [ m ] ( _I u. `' _E ) <-> ( n e. { m } \/ n e. m ) ) |
| 25 | elun | |- ( n e. ( m u. { m } ) <-> ( n e. m \/ n e. { m } ) ) |
|
| 26 | 12 24 25 | 3bitr4i | |- ( n e. [ m ] ( _I u. `' _E ) <-> n e. ( m u. { m } ) ) |
| 27 | 26 | eqriv | |- [ m ] ( _I u. `' _E ) = ( m u. { m } ) |
| 28 | reli | |- Rel _I |
|
| 29 | relcnv | |- Rel `' _E |
|
| 30 | relun | |- ( Rel ( _I u. `' _E ) <-> ( Rel _I /\ Rel `' _E ) ) |
|
| 31 | 28 29 30 | mpbir2an | |- Rel ( _I u. `' _E ) |
| 32 | dfrel3 | |- ( Rel ( _I u. `' _E ) <-> ( ( _I u. `' _E ) |` _V ) = ( _I u. `' _E ) ) |
|
| 33 | 31 32 | mpbi | |- ( ( _I u. `' _E ) |` _V ) = ( _I u. `' _E ) |
| 34 | 33 | eceq2i | |- [ m ] ( ( _I u. `' _E ) |` _V ) = [ m ] ( _I u. `' _E ) |
| 35 | df-suc | |- suc m = ( m u. { m } ) |
|
| 36 | 27 34 35 | 3eqtr4i | |- [ m ] ( ( _I u. `' _E ) |` _V ) = suc m |
| 37 | 11 36 | mpteq12i | |- ( m e. dom ( ( _I u. `' _E ) |` _V ) |-> [ m ] ( ( _I u. `' _E ) |` _V ) ) = ( m e. _V |-> suc m ) |
| 38 | mptv | |- ( m e. _V |-> suc m ) = { <. m , n >. | n = suc m } |
|
| 39 | 3 37 38 | 3eqtri | |- ( _I AdjLiftMap _V ) = { <. m , n >. | n = suc m } |
| 40 | df-sucmap | |- SucMap = { <. m , n >. | suc m = n } |
|
| 41 | 2 39 40 | 3eqtr4ri | |- SucMap = ( _I AdjLiftMap _V ) |