This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsmo2 | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 2 | ralcom | ⊢ ( ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | impexp | ⊢ ( ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 4 | simpr | ⊢ ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 5 | ordtr1 | ⊢ ( Ord dom 𝐹 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) ) | |
| 6 | 5 | 3impib | ⊢ ( ( Ord dom 𝐹 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) |
| 7 | 6 | 3com23 | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝐹 ) |
| 8 | simp3 | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 9 | 7 8 | jca | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ) |
| 10 | 9 | 3expia | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑦 ∈ 𝑥 → ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 11 | 4 10 | impbid2 | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ↔ 𝑦 ∈ 𝑥 ) ) |
| 12 | 11 | imbi1d | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 13 | 3 12 | bitr3id | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 13 | ralbidv2 | ⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 15 | 14 | ralbidva | ⊢ ( Ord dom 𝐹 → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 | 2 15 | bitrid | ⊢ ( Ord dom 𝐹 → ( ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 16 | pm5.32i | ⊢ ( ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | 17 | anbi2i | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 19 | 3anass | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 20 | 3anass | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 21 | 18 19 20 | 3bitr4i | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | 1 21 | bitri | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |