This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcval.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcval.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrcval.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) | ||
| estrcval.o | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) | ||
| Assertion | estrcval | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcval.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcval.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrcval.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) | |
| 4 | estrcval.o | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) | |
| 5 | df-estrc | ⊢ ExtStrCat = ( 𝑢 ∈ V ↦ { 〈 ( Base ‘ ndx ) , 𝑢 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) | |
| 7 | 6 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( Base ‘ ndx ) , 𝑢 〉 = 〈 ( Base ‘ ndx ) , 𝑈 〉 ) |
| 8 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) | |
| 9 | 6 6 8 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 11 | 9 10 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = 𝐻 ) |
| 12 | 11 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
| 13 | 6 | sqxpeqd | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 × 𝑢 ) = ( 𝑈 × 𝑈 ) ) |
| 14 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) | |
| 15 | 13 6 14 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 17 | 15 16 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = · ) |
| 18 | 17 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 = 〈 ( comp ‘ ndx ) , · 〉 ) |
| 19 | 7 12 18 | tpeq123d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → { 〈 ( Base ‘ ndx ) , 𝑢 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑢 , 𝑦 ∈ 𝑢 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑢 × 𝑢 ) , 𝑧 ∈ 𝑢 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 20 | 2 | elexd | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 21 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V ) |
| 23 | 5 19 20 22 | fvmptd2 | ⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 24 | 1 23 | eqtrid | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |