This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrcco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| Assertion | estrccofval | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrcco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | 1 2 4 | estrchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 6 | eqidd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) | |
| 7 | 1 2 5 6 | estrcval | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
| 8 | catstr | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 | |
| 9 | ccoid | ⊢ comp = Slot ( comp ‘ ndx ) | |
| 10 | snsstp3 | ⊢ { 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } | |
| 11 | 2 2 | xpexd | ⊢ ( 𝜑 → ( 𝑈 × 𝑈 ) ∈ V ) |
| 12 | mpoexga | ⊢ ( ( ( 𝑈 × 𝑈 ) ∈ V ∧ 𝑈 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ∈ V ) | |
| 13 | 11 2 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ∈ V ) |
| 14 | 7 8 9 10 13 3 | strfv3 | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |