This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrn5 | ⊢ ran 𝐴 = ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) | |
| 2 | opex | ⊢ 〈 𝑦 , 𝑧 〉 ∈ V | |
| 3 | breq1 | ⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( 𝑝 2nd 𝑥 ↔ 〈 𝑦 , 𝑧 〉 2nd 𝑥 ) ) | |
| 4 | eleq1 | ⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( 𝑝 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | vex | ⊢ 𝑧 ∈ V | |
| 8 | 6 7 | br2ndeq | ⊢ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ↔ 𝑥 = 𝑧 ) |
| 9 | equcom | ⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) | |
| 10 | 8 9 | bitri | ⊢ ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ↔ 𝑧 = 𝑥 ) |
| 11 | 10 | anbi1i | ⊢ ( ( 〈 𝑦 , 𝑧 〉 2nd 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
| 12 | 5 11 | bitrdi | ⊢ ( 𝑝 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) ) |
| 13 | 2 12 | ceqsexv | ⊢ ( ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
| 15 | excom | ⊢ ( ∃ 𝑧 ∃ 𝑝 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) | |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | opeq2 | ⊢ ( 𝑧 = 𝑥 → 〈 𝑦 , 𝑧 〉 = 〈 𝑦 , 𝑥 〉 ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) ) |
| 19 | 16 18 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) |
| 20 | 14 15 19 | 3bitr3ri | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
| 21 | 20 | exbii | ⊢ ( ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑦 ∃ 𝑝 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
| 22 | ancom | ⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) | |
| 23 | anass | ⊢ ( ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) | |
| 24 | 16 | brresi | ⊢ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ↔ ( 𝑝 ∈ ( V × V ) ∧ 𝑝 2nd 𝑥 ) ) |
| 25 | elvv | ⊢ ( 𝑝 ∈ ( V × V ) ↔ ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ) | |
| 26 | 25 | anbi1i | ⊢ ( ( 𝑝 ∈ ( V × V ) ∧ 𝑝 2nd 𝑥 ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ) |
| 27 | 24 26 | bitri | ⊢ ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ) |
| 28 | 27 | anbi1i | ⊢ ( ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ( ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ 𝑝 2nd 𝑥 ) ∧ 𝑝 ∈ 𝐴 ) ) |
| 29 | 19.41vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ↔ ( ∃ 𝑦 ∃ 𝑧 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) | |
| 30 | 23 28 29 | 3bitr4i | ⊢ ( ( 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ∧ 𝑝 ∈ 𝐴 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
| 31 | 22 30 | bitri | ⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
| 32 | 31 | exbii | ⊢ ( ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ↔ ∃ 𝑝 ∃ 𝑦 ∃ 𝑧 ( 𝑝 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑝 2nd 𝑥 ∧ 𝑝 ∈ 𝐴 ) ) ) |
| 33 | 1 21 32 | 3bitr4i | ⊢ ( ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ) |
| 34 | 16 | elrn2 | ⊢ ( 𝑥 ∈ ran 𝐴 ↔ ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ 𝐴 ) |
| 35 | 16 | elima2 | ⊢ ( 𝑥 ∈ ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( 2nd ↾ ( V × V ) ) 𝑥 ) ) |
| 36 | 33 34 35 | 3bitr4i | ⊢ ( 𝑥 ∈ ran 𝐴 ↔ 𝑥 ∈ ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) ) |
| 37 | 36 | eqriv | ⊢ ran 𝐴 = ( ( 2nd ↾ ( V × V ) ) “ 𝐴 ) |